Improved Survival of Ovarian Cancer Patients Receiving Treatment Guided by Comprehensive Tumor Profiling

A preliminary report from the Caris Registry™ demonstrated significantly longer post-profiling survival in patients with ovarian, Fallopian tube or primary peritoneal cancer who were given treatments that their tumor profile showed were likely to benefit.

Data from an ovarian cancer registry presented at the 2014 European Society for Gynaecological Oncology (ESGO) annual meeting reinforce comprehensive tumor profiling as a “game changer” for oncologists.

The preliminary report from the Caris Registry™ demonstrated significantly longer post-profiling survival in patients with ovarian, Fallopian tube, or primary peritoneal cancer who were given treatments that their tumor profile showed were likely to benefit them, as compared with patients who were treated with drugs that profiling suggested would be less effective. Data[1] revealed that patients whose treatment was guided by tumor profiling had a 46% lower risk of death (Hazard Ratio = 0.54, p value = 0.0018).

The comprehensive tumor profiling service used in the study measures a broad range of cancer “biomarkers” (proteins, genes or other molecules that affect how cancer cells grow, multiply and respond to therapies) and interprets the results to identify treatments most likely to be of benefit and help eliminate those that are less likely to benefit the patient. The results allow oncologists to better determine appropriate treatments for each patient, based on the individual makeup of their cancer rather than the site of the tumor.

Data from earlier studies show that comprehensive tumor profiling consistently identifies biomarkers linked to specific treatments in over 90% of patients[2], and that clinicians change their intended treatment decision based on profiling results in over 80% of cases[3].  Across a range of cancer types, tumor profiling-guided treatment has been shown to benefit patients[4] and improve outcomes when compared to unguided treatment[5].  The ESGO data demonstrate that for many ovarian cancer patients who have run out of options, comprehensive tumor profiling consistently offers oncologists actionable insights to help choose a patient’s next treatment and can improve patient outcomes.

Professor Hani Gabra

Professor Hani Gabra

Professor Hani Gabra, author of the ESGO publication and Director, Ovarian Cancer Action Research Centre at Imperial College London, said:

“The data presented at ESGO this year further support the use of comprehensive tumor profiling. It offers new options to patients whose cancers are difficult to treat or rare, or who have exhausted standard treatment options. I’m extremely excited to see this breadth of research on a global platform and I am hopeful that profiling will be rapidly adopted in clinical practice in Europe.”

Gilda Witte, CEO of Ovarian Cancer Action

Gilda Witte, CEO of Ovarian Cancer Action

Gilda Witte, Chief Executive of Ovarian Cancer Action, stated:

“In order to improve the outlook for women with ovarian cancer, we need to know much more about types of tumors, and tumor profiling is becoming paramount in this area. We are hugely impressed that Caris is investing in research to provide information on ovarian tumors and we hope that this potentially leads to a breakthrough in treatment which may subsequently impact survivorship.”

Andreas Voss

Andreas Voss, VP of Medical & Clinical Affairs, Caris Life Sciences

Andreas Voss, Vice President, Medical and Clinical Affairs, Caris Life Sciences said:

“Comprehensive tumor profiling is a hot topic this year. It is becoming increasingly clear that the best approach to tumor profiling is to use a variety of methods to test for mutations, gene expression levels, and protein biomarkers. These combined analyses provide a comprehensive report and actionable treatment options for oncologists. Caris Molecular Intelligence™ remains the world’s most advanced commercial tumor profiling service – we are proud to be working with leading oncologists worldwide to bring the benefits of tumor profiling to cancer patients.”

Caris Molecular Intelligence™ is not yet formally reimbursed across Europe but it is available to purchase in all European markets. Individual insurance companies, clinics and organizations in some countries have agreed to reimburse the service on application. Caris Life Sciences is dedicated to working to ensure the service is reimbursed across Europe.

References:

1. Poster by Oliver KE et al. Tumour molecular profile-directed treatment is associated with improved survival in recurrent epithelial ovarian cancer. ESGO 2014. See also Oliver KE et al. The impact of tumor molecular profile-directed treatment on survival in recurrent ovarian cancer. J Clin Oncol 32:5s, 2014 (suppl; abstr 5591).

2. Astsaturov IA et al. Profiling of 1,250 neuroendocrine tumors identifies multiple potential drug targets. J Clin Oncol 32, 2014 (Suppl 3; Abstr 214).

3. Epelbaum R et al. Molecular Profiling (MP)-Selected Therapy for the Treatment of Patients with Advanced Pancreaticobiliary Cancer (PBC), 2013 ASCO GI Symposium. Jan 2013. (Abstract Number 195).

4. Von Hoff D et al., Pilot Study Using Molecular Profiling of Patients’ Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers, J Clin Oncol. Nov 20;28(33)2010:4877-83. Compare Doroshow JH. Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol. 2010 Nov 20;28(33):4869-71. doi: 10.1200/JCO.2010.31.1472. Epub 2010 Oct 4. [PMID: 20921466].

5. Tsimberidou AM et al., Personalized Medicine in a Phase I Clinical Trials Program: The MD Anderson Cancer Center Initiative. Clin Cancer Res 18:6373-6383.

About Caris Life Sciences and Caris Molecular Intelligence™

Caris Life Sciences is a leading biosciences company focused on fulfilling the promise of precision medicine. Caris Molecular Intelligence™, the industry’s first and largest tumor profiling service, provides oncologists with the most potentially clinically actionable treatment options available to personalize care today. Using a variety of advanced and clinically validated technologies, which assess relevant biological changes in each patient’s tumor, Caris Molecular Intelligence correlates biomarker data generated from a tumor with biomarker/drug associations derived from the cancer clinical literature. The company is also developing a series of blood tests based on its proprietary Carisome® TOP™ platform, a revolutionary blood-based testing technology for diagnosis, prognosis, and theranosis of cancer and other complex diseases. Headquartered in Irving, Texas, Caris Life Sciences offers services throughout Europe, the U.S., Australia, and other international markets. To learn more, please visit http://www.carislifesciences.eu.

Source:  Improved Survival of Ovarian Cancer Patients Receiving Treatment Guided by Comprehensive Tumor Profiling, Caris Life Sciences Press Release, dated September 11, 2014 (with editorial changes)

Related Posts:

Glutamine Ratio is Key Ovarian Cancer Indicator

Glutamine plays an important role in cellular growth in several cancers. A Rice University-led study shows how ovarian cancer metabolism changes between early and late stages. In this study, a further link between glutamine dependency and tumor invasiveness is established in ovarian cancer.

A Rice University-led analysis of the metabolic profiles of hundreds of ovarian tumors has revealed a new test to determine whether ovarian cancer cells have the potential to metastasize, or spread to other parts of the body. The study also suggests how ovarian cancer treatments can be tailored based on the metabolic profile of a particular tumor.

The research, which appears online this week in Molecular Systems Biology, was conducted at the Texas Medical Center in Houston by researchers from Rice University, the University of Texas M.D. Anderson Cancer Center, and the Baylor College of Medicine.

Deepak Nagrath

Deepak Nagrath, Assistant Professor of Chemical and Biomolecular Engineering at Rice University

“We found a striking difference between the metabolic profiles of poorly aggressive and highly aggressive ovarian tumor cells, particularly with respect to their production and use of the amino acid glutamine,” said lead researcher Deepak Nagrath Ph.D. of Rice University. “For example, we found that highly aggressive ovarian cancer cells are glutamine-dependent, and in our laboratory studies, we showed that depriving such cells of external sources of glutamine — as some experimental drugs do — was an effective way to kill late-stage cells.

“The story for poorly aggressive cells was quite different,” said Nagrath, Assistant Professor of Chemical and Biomolecular Engineering at Rice. “These cells use an internal metabolic pathway to produce a significant portion of the glutamine that they consume, so a different type of treatment — one aimed toward internal glutamine sources — will be needed to target cells of this type.”

The research is part of a growing effort among cancer researchers worldwide to create treatments that target the altered metabolism of cancer cells. It has long been known that cancer cells adjust their metabolism in subtle ways that allow them to proliferate faster and survive better. In 1924, Otto Warburg showed that cancer cells produced far more energy from glycolysis than did normal cells. The Nobel Prize-winning discovery became known as the “Warburg effect,” and researchers long believed that all cancers behaved in this way. Intense research in recent decades has revealed a more nuanced picture.

“Each type of cancer appears to have its own metabolic signature,” Nagrath said. “For instance, kidney cancer does not rely on glutamine, and though breast cancer gets some of its energy from glutamine, it gets even more from glycolysis. For other cancers, including glioblastoma and pancreatic cancer, glutamine appears to be the primary energy source.”

Rice University Researchers

Researchers at Rice University’s Laboratory for Systems Biology of Human Diseases analyzed the metabolic profiles of hundreds of ovarian tumors and discovered a new test to determine whether ovarian cancer cells have the potential to metastasize. Study co-authors include, from left, Julia Win, Stephen Wahlig, Deepak Nagrath, Hongyun Zhao, Lifeng Yang and Abhinav Achreja.

Nagrath, director of Rice University’s Laboratory for Systems Biology of Human Diseases, said the new metabolic analysis indicates that ovarian cancer may be susceptible to multidrug cocktails, particularly if the amounts of the drugs can be tailored to match the metabolic profile of a patient’s tumor.

The research also revealed a specific biochemical test that pathologists could use to guide such treatments. The test involves measuring the ratio between the amount of glutamine that a cell takes up from outside and the amount of glutamine it makes internally.

“This ratio proved to be a robust marker for prognosis,” said University of Texas M.D. Anderson Cancer Center co-author Anil Sood, M.D., Professor of Gynecologic Oncology and Reproductive Medicine and co-director of the Center for RNA Interference and Non-Coding RNA. “A high ratio was directly correlated to tumor aggression and metastatic capability. Patients with this profile had the worst prognosis for survival.”

The three-year study included cell culture studies at Rice as well as a detailed analysis of gene-expression profiles of more than 500 patients from the Cancer Genome Atlas and protein-expression profiles from about 200 M.D. Anderson patients.

“The enzyme glutaminase is key to glutamine uptake from outside the cell, and glutaminase is the primary target that everybody is thinking about right now in developing drugs,” Nagrath said. “We found that targeting only glutaminase will miss the less aggressive ovarian cancer cells because they are at a metabolic stage where they are not yet glutamine-dependent.”

Lifeng

Lifeng Yang, Study Lead Author & Graduate Student, Systems Biology of Human Diseases, Rice University

Rice University graduate student Lifeng Yang, lead author of the study, designed a preclinical experiment to test the feasibility of a multidrug approach, involving the use of a JAK inhibitor and a glutaminase inhibitor. This “drug cocktail” approach inhibited the early stage production of internal glutamine, while also limiting the uptake of external glutamine.

“That depleted all sources of glutamine for the cells, and we found that cell proliferation decreased significantly,” Yang said.

Nagrath said the study also revealed another key finding — a direct relationship between glutamine and an ovarian cancer biomarker called “STAT3” (Signal Transducer And Activator Of Transcription 3).

“A systems-level understanding of the interactions between metabolism and signaling is vital to developing novel strategies to tackle cancer,” said M.D. Anderson co-author Prahlad Ram Ph.D., Associate Professor of Systems Biology and co-director of the M.D. Anderson Cancer Center’s Systems Biology Program. “STAT3 is the primary marker that is used today to ascertain malignancy, tumor aggression and metastasis in ovarian cancer.”

Nagrath said, “The higher STAT3 is, the more aggressive the cancer. For the first time, we were able to show how glutamine regulates STAT3 expression through a well-known metabolic pathway called the TCA cycle, which is also known as the ‘Krebs cycle.’”

Nagrath said the research is ongoing. Ultimately, Dr. Nagrath hopes the investigations will lead to new treatment regimens for cancer as well as a better understanding of the role of cancer-cell metabolism in metastasis and drug resistance.

Co-authors include Hongyun Zhao, Stephen Wahlig, Abhinav Achreja and Julia Win (all affiliated with Rice University); Tyler Moss, Lingegowda Mangala, Guillermo Armaiz-Pena, Dahai Jiang, Rajesha Roopaimoole, Cristian Rodriguez-Aguayo, Imelda Mercado-Uribe, Gabriel Lopez-Berestein and Jinsong Liu (all affiliated with M.D. Anderson Cancer Center); Juan Marini of Baylor College of Medicine; and Takashi Tsukamoto of Johns Hopkins University.

The research was supported by seed funding from (i) the Collaborative Advances in Biomedical Computing Program at Rice Univesity’s Ken Kennedy Institute for Information Technology, (ii) Rice University’s John and Ann Doerr Fund for Computational Biomedicine, (iii) the Odyssey Fellowship Program at the MD Anderson Cancer Center, (iv) the estate of C.G. Johnson Jr., (v) the National Institutes of Health, (vi) the Cancer Prevention and Research Institute of Texas, (v) the Ovarian Cancer Research Fund, (vi) the Blanton-Davis Ovarian Cancer Research Program, (vii) the Gilder Foundation, and (viii) the MD Anderson Cancer Center.

Sources: 

Ovarian Cancer Tumors Can Grow For Ten Years Or More Before Being Detected By Today’s Blood Tests

A new mathematical model developed by Stanford University School of Medicine scientists finds that ovarian cancer tumors can grow for 10 years or longer before currently available blood tests will detect them.

A new mathematical model developed by Stanford University School of Medicine scientists indicates that tumors can grow for 10 years or longer before currently available blood tests will detect them. The analysis, which was restricted to ovarian cancer tumors but is broadly applicable across all solid tumor types, was published online November 16 in Science Translational Medicine.

“The study’s results can be viewed as both bad and good news,” said Sanjiv “Sam” Gambhir, M.D., Ph.D., professor and chair of radiology and the study’s senior author. Sharon Hori, Ph.D., a postdoctoral scholar in Dr. Gambhir’s laboratory, is the lead study author.

The mathematical model developed by Dr. Sam Gambhir’s lab shows that it would be possible to detect tumors years before they grow big enough to metastasize if researchers can develop the right biomarkers.

The bad news, as explained by Dr. Gambhir, is that by time a tumor reaches a detectable size using today’s available blood tests, it is likely to have metastasized to other areas of the body, making it much more deadly than if it had been caught earlier. “The good news is that we have, potentially, 10 or even 20 years to find the tumor before it reaches this size, if only we can improve our blood-based methods of detecting tumors,” said Dr. Gambhir. “We think our mathematical model will help guide attempts to do that.”

The study advances previous research about the limits of current detection methods. For instance, it is strikingly consistent with a finding reported two years ago by Stanford biochemistry professor Patrick Brown, M.D., Ph.D., that current ovarian cancer tests could not detect tumors early enough to make a significant dent in the mortality rate. There is a push to develop more-sensitive diagnostic tests and find better biomarkers, and Dr. Gambhir’s new model could be an essential tool in this effort. For the first time, the new model connects the size of a tumor with blood biomarker levels being shed by that tumor.

To create their model, Drs. Gambhir and Hori used mathematical models originally developed to predict the concentration of drugs injected into the blood. The investigators linked these to additional models of tumor cell growth.

Tumors do not secrete drugs, but they can shed telltale molecules into surrounding tissue, from which those substances, known as “biomarkers,” diffuse into the blood. Some biomarkers may be made predominantly by tumor cells.  These substances can be measured in the blood as proxies for a tumor.

Some biomarkers are in wide use today. One is the well-known PSA (prostate specific antigen) for prostate cancer. Another example of a biomarker is CA-125 (cancer antigen 125) for ovarian cancer. But these and other currently used blood tests for cancer biomarkers were not specifically developed for early detection, and are generally more effective for relatively noninvasive monitoring of the progress of a late-stage tumor or tumor response to treatment. That is, rising blood levels of the substance may indicate that the tumor is growing, while declining levels may indicate possible tumor shrinkage.

Both CA-125 and PSA are also produced, albeit in smaller amounts, by healthy tissue, complicating efforts to detect cancer at an early stage when the tumor’s output of the biomarker is relatively low.

The new mathematical model employs separate equations, each governing the movement of a biomarker from one compartment into the next. Into these equations, one can plug known values — such as how fast a particular type of tumor grows, how much of the biomarker a tumor cell of this type sheds per hour, and the minimum levels of the biomarker that must be present in the blood for a currently available assay to detect it.

As a test case, Drs. Gambhir and Hori chose CA-125, a well-studied biomarker which is shed into the blood by ovarian cancer tumors. Ovarian cancer is a notorious example of a condition for which early detection would make a significant difference in survival outcomes.

CA-125 is a protein made almost exclusively by ovarian tumor cells. The well-known pharmacokinetics, metabolic fates (typical amounts secreted by an ovarian cell), typical ovarian tumor growth rates, and other properties of CA-125 make the biomarker an excellent candidate for “road testing” with Gambhir and Hori’s model. CA-125 is by no means the ideal biomarker, said Dr. Gambhir, while noting that it can still be used to better understand the ideal properties of biomarkers for early ovarian cancer detection.

Applying their equations to CA-125, Drs. Gambhir and Hori determined that an ovarian cancer tumor would need to reach a size of approximately 1.7 billion cells, or the volume of a cube with a 2-centimeter edge, before the currently available CA-125 blood test could reliably detect it. At typical tumor-growth rates, it would take a single cancer cell approximately 10.1 to 12.6 years of development to become a tumor containing 1.7 billion cells.

The model further calculated that a biomarker otherwise equivalent to CA125 — but shed only by ovarian tumor cells — would allow reliable detection within 7.7 years, while the tumor’s size would be that of a tiny cube about one-sixth of an inch high.

In the last decade, many potential new biomarkers for different forms of cancers have been identified. There’s no shortage of promising candidates — six for lung cancer alone, for example. But validating a biomarker in large clinical trials is a long, expensive process. So it is imperative to determine as efficiently as possible which, among many potential tumor biomarkers, is the best prospective candidate.

“This [mathematical] model could take some of the guesswork out of it,” Gambhir said. He also stated:

“It [the mathematical model] can be applied to all kinds of solid cancers and prospective biomarkers as long as we have enough data on, for instance, how much of it a tumor cell secretes per hour, how long the biomarker can circulate before it’s degraded and how quickly tumor cells divide. We can tweak one or another variable — for instance, whether a biomarker is also made in healthy tissues or just the tumor, or assume we could manage to boost the sensitivity of our blood tests by 10-fold or 100-fold — and see how much it advances our ability to detect the tumor earlier on.”

There are new detection technologies capable of detecting biomarkers at concentrations as low as a few hundred molecules per milliliter (1-cubic centimeter) of blood. In 2009, Dr. Gambhir and his colleagues reported on one such developing technology: “magneto-nanosensors” that can detect biomarkers with a 100-fold greater sensitivity than current methods.

Better biomarker detection alone might allow ovarian cancer tumor detection at the 9-year point, said Gambhir.

A second priority is to come up with new and better biomarkers. “It’s really important for us to find biomarkers that are made exclusively by tumor cells,” Dr. Gambhir said.

Under the right conditions (a highly sensitive assay measuring levels of a biomarker that is shed only by cancer cells), Gambhir stated, the model predicts that a tiny tumor with a volume equivalent to a cube less than one-fifteenth of an inch (or 1.7 millimeters) on a side could be detected.

Dr. Gambhir is also the Virginia and D.K. Ludwig Professor in Cancer Research and director of the Molecular Imaging Program at Stanford, the director of the Canary Center at Stanford for Cancer Early Detection, and a member of the Stanford Cancer Institute.

The study was funded by the Canary Foundation and the National Cancer Institute.

Sources:

Mesothelin Antibodies Occur In Some Women With An Epidemiologic Risk For Ovarian Cancer.

Researchers at Rush University Medical Center discover mesothelin antibodies in the bloodstream of infertile women, who possess a higher risk of ovarian cancer.

Using a new approach to developing biomarkers for the very early detection of ovarian cancer, researchers at Rush University Medical Center have identified a molecule in the bloodstream of infertile women, who possess a higher risk of ovarian cancer. This finding may be relevant in the future for screening women at high risk for the disease — or even those with early-stage ovarian cancer.

The molecule — an antibody that the human body manufactures — is an autoimmune response to mesothelin. Mesothelin a well-characterized ovarian cancer antigen and protein which is found in abundance on the surface of ovarian cancer cells, but present only in limited amounts in normal human tissue.

The study is published in the August 16 online version issue of Cancer Epidemiology, Biomarkers & Prevention, published by the American Association for Cancer Research (AACR).

Judith Luborsky, Ph.D., Lead Study Author; Professor, Pharmacology, Obstetrics & Gynecology and Preventive Medicine, Rush Medical College

“The finding is extremely important because at present medical tests are unable to detect ovarian cancer in its early stages, which is why death rates from this disease are so high,” said Judith Luborsky, Ph.D., professor of pharmacology, obstetrics and gynecology and preventive medicine at Rush and the lead author of the study.

“Our approach to discovering cancer biomarkers was unique in this study. Instead of investigating molecules specific to ovarian cancer alone, we asked what molecules women with a risk of ovarian cancer and those with ovarian cancer had in common,” Luborsky said.

The study may have enabled the researchers to explain, in part, the link between infertility and ovarian cancer that has been established in numerous epidemiological surveys.

“More important, with the discovery of the mesothelin antibody, we now have what appears to be a biomarker that can potentially be used in screening tests to help us conquer ovarian cancer,” Luborsky said.

According to the American Cancer Society’s most recent estimates, it is anticipated that 21,900 new cases of ovarian cancer will be diagnosed in the U.S. in 2011, and approximately 15,460 deaths will occur in connection with the disease. Ovarian cancer is the ninth most common cancer in women (not counting skin cancer) and ranks as the fifth highest cause of cancer death in women. It is the most lethal gynecologic cancer. The poor prognosis for women with ovarian cancer is due to the lack of both clinical symptoms when the cancer first develops and the absence of laboratory tests specific to the disease.

In the study at Rush, researchers tested for mesothelin antibodies in the bloodstream of 109 women who were infertile; 28 women diagnosed with ovarian cancer, 24 women with benign ovarian tumors or cysts, and 152 healthy women. Causes of infertility included endometriosis, ovulatory dysfunction, and premature ovarian failure. Some causes of infertility were unexplained.

Significant levels of mesothelin antibodies were found in women with premature ovarian failure, ovulatory dysfunction and unexplained infertility, as well as in women with ovarian cancer. The same results were not found in women with endometriosis, good health, or benign disease. Endometriosis is generally associated with the clear cell and endometrioid subtypes of epithelial ovarian cancer, as compared to other forms of the disease associated with infertility, which may explain why mesothelin antibodies were not found in the endometriosis cases.

It is important to emphasize that the explanation as to why the presence of mesothelin antibodies in the bloodstream should be linked with ovarian cancer is not clear.

“It has been hypothesized that an autoimmune response precedes or somehow contributes to the development and progression of malignant tumors,” Luborsky said. “We think that antibodies may arise in response to very early abnormal changes in ovarian tissue that may or may not progress to malignancy, depending on additional triggering events. Or, alternatively, antibodies may bind to normal cells in the ovary, causing dysfunction and leading to infertility — and, in a subpopulation of women, to the development of ovarian cancer.”

Other researchers involved in the study were Yi Yu, MS, and Seby Edassery, MS, both from Rush, as well as a group led by Ingegerd Hellstrom, M.D., Ph.D., and Karl Eric Hellstrom, M.D., Ph.D., which included Yuan Yee Yip, BS, Jade Jaffar, BS, and Pu Liu, Ph.D. from Harborview Medical Center at the University of Washington.

The study was supported by funding from the National Institutes of Health and Fujirebio Diagnostics, Inc.

About Rush

Rush is a not-for-profit academic medical center comprising Rush University Medical Center, Rush University, Rush Oak Park Hospital and Rush Health.

Rush’s mission is to provide the best possible care for its patients. Educating tomorrow’s health care professional, researching new and more advanced treatment options, transforming its facilities and investing in new technologies—all are undertaken with the drive to improve patient care now, and for the future.

Sources:

  • Luborsky JL, et al. Autoantibodies to Mesothelin in Infertility. Cancer Epidemiol Biomarkers Prev. 2011 Aug 16. PubMed PMID: 21846819 [Epub ahead of print]
  • Researchers at Rush University Medical Center Discover Antibody That May Help Detect Ovarian Cancer in its Earliest Stages, News Release, Rush University Medical Center, August 16, 2010.

ASCO 2011: Genetic Biomarker Predicts Taxane Drug-Induced Neuropathy

A new study has identified the first genetic biomarkers for taxane-induced peripheral neuropathy, a potentially severe complication of taxane chemotherapy that affects nerves in about one-third of patients with cancer receiving such treatment.

ASCO Releases Studies From Upcoming Annual Meeting – Important Advances in Targeted Therapies, Screening, and Personalized Medicine

The American Society of Clinical Oncology (ASCO) today highlighted several studies in a press briefing from among more than 4,000 abstracts publicly posted online at http://www.asco.org in advance of ASCO’s 47th Annual Meeting. An additional 17 plenary, late-breaking and other major studies will be released in on-site press conferences at the Annual Meeting.

The meeting, which is expected to draw approximately 30,000 cancer specialists, will be held June 3-7, 2011, at McCormick Place in Chicago, Illinois. The theme of this year’s meeting is “Patients. Pathways. Progress.”

“This year marks the 40th anniversary of the signing of the National Cancer Act, a law that led to major new investments in cancer research. Every day in our offices, and every year at the ASCO meeting, we see the results of those investments. People with cancer are living longer, with a better quality of life, than ever before,” said George W. Sledge Jr., M.D., President of ASCO, Ballve-Lantero Professor of Oncology and professor of pathology and laboratory medicine at the Indiana University School of Medicine.

“With our growing understanding of the nature of cancer development and behavior, cancer is becoming a chronic disease that a growing number of patients can live with for many years,” said Dr. Sledge. “The studies released today are the latest examples of progress against the disease, from new personalized treatments, to new approaches to screening and prevention.”

New study results involving a genetic marker which can predict taxane drug-induced neuropathy were highlighted today in the ASCO press briefing, as summarized below.

Genetic Biomarker Predicts Taxane-Induced Neuropathy

A new study has identified the first genetic biomarkers for taxane drug-induced peripheral neuropathy, a potentially severe complication of taxane chemotherapy that affects nerves in about one-third of patients with cancer receiving such treatment. The finding may eventually lead to a simple blood test to determine whether a patient is at high risk for neuropathy.

Bryan P. Schneider, M.D., Physician & Researcher, Indiana University Melvin & Bren Simon Cancer Center; Associate Director, Indiana Institute for Personalized Medicine

“If these findings can be replicated, this may allow physicians to know prior to recommending therapy whether the patient is at an inordinate risk for developing taxane-induced neuropathy,” said Bryan P. Schneider, M.D., lead author and a physician/researcher at the Indiana University Melvin and Bren Simon Cancer Center and Associate Director for the Indiana Institute for Personalized Medicine. “This may allow for better counseling, use of alternative drugs or schedules, or omission of taxanes in the appropriate settings. These genetic findings might also provide insight into the mechanism of this side effect and help develop drugs to prevent this toxicity altogether.”

Such damage to the nerves can cause pain and numbness and limit the dose of chemotherapy a patient can receive. While only a few factors seem to predict which patients are likely to get peripheral neuropathy, including a history of diabetes and advanced age, genetic variations may explain why some patients are more sensitive to taxane drugs.

The authors conducted a genome wide association study on 2,204 patients enrolled in an Eastern Cooperative Oncology Group breast cancer clinical trial (E5103) in which all patients received taxane-based chemotherapy, namely paclitaxel (Taxol). The study looked for variations in DNA (deoxyribonucleic acid) called single nucleotide polymorphisms, or SNPs (pronounced “snips”), by evaluating more than 1.2 million SNPs in each patient.  A SNP is a DNA sequence variation which occurs when a single nucleotide — A (adenine), T (thymine), C (cytosine), or G (guanine) — in the genome (or other shared sequence) differs between two individuals, or between paired chromosomes located within the nucleus of an individual’s cells.

With a median follow-up of 15 months, the study identified genetic subgroups that were markedly more likely to develop peripheral neuropathy.

Those who carried two normal nucleotides in the RWDD3 gene had a 27 percent chance of experiencing neuropathy; those who carried one normal nucleotide and one SNP had a 40 percent risk; and those who carried two SNPs had a 60 percent risk.

In contrast, those who carried two normal nucleotides in the TECTA gene had a 29 percent chance of experiencing neuropathy; those who carried one normal nucleotide and one SNP had a 32 percent risk; and those who carried two SNPs had a 57 percent risk.

The study also found that older patients and African Americans were much more likely to have peripheral neuropathy, and further analysis of SNPs in these groups is underway.

The authors plan to continue their work in additional trials to validate these findings and to determine whether a different type or schedule of taxane therapy would result in less neuropathy in the more susceptible genetic groups. The authors also are collaborating with neurobiologists to understand why these genetic variations might make the nerves more sensitive to these drugs.

____________________

Sources:

Resources:

2011 NCCN Conference: New Treatment Options Lead to Steady Progress Against Ovarian Cancer

Recommendations stemming from recent clinical trials highlight notable updates to the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™) for Ovarian Cancer at the National Comprehensive Cancer Network® (NCCN®) 16th Annual Conference.

Robert J. Morgan, Jr., M.D., Professor of Medical Oncology, City of Hope Comprehensive Cancer Center; Chair, NCCN Guidelines Panel for Ovarian Cancer

Although finding effective screening tools remains a priority, new treatment options for women with ovarian cancer, such as the ones outlined in the updated NCCN Guidelines for Ovarian Cancer,[1] are vital to making steady progress against the disease according to Robert J. Morgan, Jr., M.D., of City of Hope Comprehensive Cancer Center and chair of the NCCN Guidelines Panel for Ovarian Cancer. Dr. Morgan outlined significant updates to the NCCN Guidelines during a recent presentation at the NCCN 16th Annual Conference.

The NCCN Guidelines address epithelial ovarian cancer (including borderline or low malignant potential) and less common histopathologies, including malignant germ neoplasms, carcinosarcomas, and sex cord-stromal tumors. They also discuss fallopian tube cancer and primary peritoneal cancer, which are less common neoplasms that are managed in a similar manner to epithelial ovarian cancer.

“Regardless of the type of cancer, the NCCN Guidelines for Ovarian Cancer reflect the importance of stage and grade of disease on prognosis and treatment recommendations,” said Dr. Morgan.

The NCCN Guidelines continue to recommend that women with borderline epithelial ovarian cancer of low malignant potential be primarily surgically managed. In contrast to patients with frankly invasive ovarian carcinoma, women with borderline disease tend to be younger and are often diagnosed with stage I disease.

“The benefits of postoperative chemotherapy has not been demonstrated for patients who have no microscopically demonstrable invasive implants, said Dr. Morgan. “Even patients with advanced stage disease at presentation have an excellent prognosis and chemotherapy should be avoided.”

The NCCN Guidelines recommend surgery limited to a unilateral salpingo-oophorectomy (USO) (preserving the uterus and contralateral ovary) for women who wish to maintain their fertility, and standard ovarian cancer debulking surgery is recommended for those not concerned about fertility preservation.

On the contrary, in women diagnosed with stage II, III, or IV epithelial ovarian cancer, the NCCN Guidelines recommend intraperitoneal chemotherapy for first-line therapy and have been updated to include dose-dense paclitaxel (Taxol®:, Bristol-Myers Squibb) as a possible treatment option.

Dr. Morgan noted that in a recent clinical trial, dose-dense weekly paclitaxel with carboplatin (Paraplatin®:, Bristol-Myers Squibb) showed an increase in both progression-free survival and overall survival when compared with conventional intraperitoneal chemotherapy of weekly carboplatin/paclitaxel.[2]

“However, the dose-dense regimen is more toxic, and patients discontinued dose-dense paclitaxel therapy more often than those receiving standard therapy,” stated Dr. Morgan. “As with all treatment decisions, the patient needs to weigh the potential benefits and risks and discuss them thoroughly with their physician.”

Dr. Morgan discussed two additional phase 3 trials assessing bevacizumab (Avastin®:, Genentech/Roche) combined with carboplatin/paclitaxel in the upfront setting compared to carboplatin/paclitaxel alone.[3-4] Although data regarding overall survival and quality of life have not been reported yet, the studies did indicate that the median progression-free survival increased in patients receiving bevacizumab as a first line and maintenance therapy.

“Only modest improvements in progression-free survival were observed in both of these trials. The NCCN Guidelines Panel prefers to await mature results of these trials prior to recommending the routine addition of bevacizumab to carboplatin/paclitaxel,” said Dr. Morgan.

As such, the updated NCCN Guidelines includes new language detailing the Panel’s view on bevacizumab encouraging participation in ongoing clinical trials that are further investigating the role of anti-angiogenesis agents in the treatment of ovarian cancer, both in the upfront and recurrence settings.

Biomarkers continue to emerge as an area of interest in predicting future patterns of the disease. In patients with ovarian cancer, Dr. Morgan discussed the value of monitoring CA-125 levels in regards to a recent study[5] comparing early versus delayed treatment of relapsed ovarian cancer.

“Often, levels of CA-125 have been shown to rise prior to a clinical or symptomatic relapse in women with ovarian cancer. This trial looked at whether there was a benefit of early treatment on the basis of increased CA-125 concentrations compared with delayed treatment on the basis of clinical recurrence,” said Dr. Morgan.

The study, which was published in The Lancet, found that there was no survival benefit to early institution of treatment based on increased CA-125 levels and that the quality of life was superior in patients in the late treatment arm.

“The results of the trial suggest that the utility of the routine monitoring of CA-125 levels in limited,” said Dr. Morgan. “The NCCN Guidelines Panel encourages patients and their physicians to actively discuss the pros and cons of CA-125 monitoring based upon these findings and have updated the NCCN Guidelines to include language supporting this recommendation.”

Virtually all drugs used in oncology have the potential to cause adverse drug reactions while being infused, which can be classified as either infusion or allergic reactions. Recently, hypersensitivity to platinum compounds has been recognized as a potential issue for patients being administered these compounds.

“Platinum compounds remain very important in the treatment of ovarian cancer in both the upfront and recurrence settings, so it was important to design strategies to allow for the safe desensitization of these agents in patients who develop allergies,” said Dr. Morgan.

Standard desensitization regimens include slowly increasing infusion concentrations over several hours. However, Dr. Morgan noted that these procedures must be done in a specific manner in order to be safely administered and pointed to the recommendations within the updated NCCN Guidelines discussing the management of drug reactions.

In conclusion, Dr. Morgan emphasized that although steady progress is being made in the treatment of ovarian cancer, further trials are necessary to investigate the role of targeted agents alone and in combination in newly diagnosed and recurrent ovarian cancer. In addition, enrollment of patients with ovarian cancer must be encouraged.

The NCCN Guidelines are developed and updated through an evidence-based process with explicit review of the scientific evidence integrated with expert judgment by multidisciplinary panels of expert physicians from NCCN Member Institutions. The most recent version of this and all NCCN Guidelines are available free of charge at NCCN.org. The NCCN Guidelines for Patients™: Ovarian Cancer is available at NCCN.com.

About the National Comprehensive Cancer Network

The National Comprehensive Cancer Network® (NCCN®), a not-for-profit alliance of 21 of the world’s leading cancer centers, is dedicated to improving the quality and effectiveness of care provided to patients with cancer. Through the leadership and expertise of clinical professionals at NCCN Member Institutions, NCCN develops resources that present valuable information to the numerous stakeholders in the health care delivery system. As the arbiter of high-quality cancer care, NCCN promotes the importance of continuous quality improvement and recognizes the significance of creating clinical practice guidelines appropriate for use by patients, clinicians, and other health care decision-makers. The primary goal of all NCCN initiatives is to improve the quality, effectiveness, and efficiency of oncology practice so patients can live better lives. For more information, visit NCCN.org.

The NCCN Member Institutions are:

  • City of Hope Comprehensive Cancer Center
  • Dana-Farber/Brigham and Women’s Cancer Center
  • Massachusetts General Hospital Cancer Center
  • Duke Cancer Institute
  • Fox Chase Cancer Center
  • Huntsman Cancer Institute at the University of Utah
  • Fred Hutchinson Cancer Research Center / Seattle Cancer Care Alliance
  • The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
  • Robert H. Lurie Comprehensive Cancer Center of Northwestern University
  • Memorial Sloan-Kettering Cancer Center
  • H. Lee Moffitt Cancer Center & Research Institute
  • The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute
  • Roswell Park Cancer Institute
  • Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
  • St. Jude Children’s Research Hospital / University of Tennessee Cancer Institute
  • Stanford Comprehensive Cancer Center
  • University of Alabama at Birmingham Comprehensive Cancer Center
  • UCSF Helen Diller Family Comprehensive Cancer Center
  • University of Michigan Comprehensive Cancer Center
  • UNMC Eppley Cancer Center at The Nebraska Medical Center
  • The University of Texas MD Anderson Cancer Center
  • Vanderbilt-Ingram Cancer Center

References:

1/ Ovarian Cancer Including Fallopian Tube Cancer & Primary Peritoneal Cancer, Version 2.2011, NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™), National Comprehensive Cancer Network. [PDF Adobe Reader Document – requires free registration and log-in at NCCN.org]

2/ Katsumata N, Yasuda M, Takahashi F, et. alJapanese Gynecologic Oncology Group. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trialLancet. 2009 Oct 17;374(9698):1331-8. Epub 2009 Sep 18. PubMed PMID: 19767092.

3/ Burger RA, Brady MF, Bookman MA, et. al.  Phase III trial of bevacizumab in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC):  a Gynecologic Oncology Group study.  J Clin Oncol 28:18s, 2010 (suppl; abstr LBA1).

4/ Perren T, Swart AM, Pfisterer J, et. alICON7: A phase III randomized gynecologic cancer intergroup trial of concurrent bevacizumab and chemotherapy followed by maintenance bevacizumab, versus chemotherapy alone in women with newly diagnosed epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC).Ann Oncol 21;viii2, 2010 (suppl 8; abstr LBA4).

5/Rustin G, van der Burg M, Griffin C, et. al. Early versus delayed treatment of relapsed ovarian cancer. Lancet. 2011 Jan 29;377(9763):380-1. PubMed PMID: 21277438.

Source:

Additional 2011 NCCN Annual Meeting Information

Caris Life Sciences Launches Molecular Profiling Service For Ovarian Cancer Patients

Caris Life Sciences announces the launch of a new molecular profiling service for ovarian cancer patients

Caris Life Sciences, Inc. (Caris), a leading biosciences company focused on enabling precise and personalized healthcare through the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic services, announced the launch of a new, Caris Target Now™ molecular profile for ovarian cancer patients. This expansion of the Caris Target Now™ offering provides individualized molecular information to treating physicians, relevant to the selection of therapies to treat this highly-lethal cancer. Ovarian cancer affects more than 20,000 women annually and produces some of the highest five-year mortality rates found among the 200+ types of cancer.

Caris Target Now™ molecular profiling examines the unique genetic and molecular make-up of each patient’s tumor so that treatment options may be matched to each patient individually.  Caris Target Now™ helps patients and their treating physicians create a cancer treatment plan based on the tumor tested. By comparing the tumor’s information with data from published clinical studies by thousands of the world’s leading cancer researchers, Caris can help determine which treatments are likely to be most effective and, just as important, which treatments are likely to be ineffective.

The Caris Target Now™ test is performed after a cancer diagnosis has been established and the patient has exhausted standard of care therapies or if questions in therapeutic management exist. Using tumor samples obtained from a biopsy, the tumor is examined to identify biomarkers that may have an influence on therapy. Using this information, Caris Target Now™ provides valuable information on the drugs that will be more likely to produce a positive response. Caris Target Now™ can be used with any solid cancer such as lung cancer, breast cancer, prostate cancer, and now, ovarian cancer.

Evidence Behind Caris Target Now™

Daniel D. Von Hoff, M.D., F.A.C.P., is the Executive Director of Caris Life Sciences' Clinical Research

A multi-center, prospective, pilot study first published in The Journal of Clinical Oncology (JCO) in October 2010 [1] — along with an accompanying editorial [2] —  determined that personalized cancer treatment tailored to a tumor’s unique genetic make-up identified therapies that increased progression free survival (PFS) over previous therapies in 27% of patients with advanced disease.

The purpose of the study was to compare PFS using a treatment regimen based on the molecular profiling (MP) of a patient’s tumor with the PFS determined for the most recent regimen on which the patient had experienced progression after taking that regimen for 6 weeks.  Unlike a typical control study, each patient was his or her own study control.  Tissue samples from patients with refractory metastatic cancer were submitted for MP in two formats including:

In many of these refractory tumors, targets for conventional therapies were identified, which was “a surprise finding,” according to Dr. Daniel Von Hoff, the Executive Director of Caris’ Clinical Research.  But the profiling also suggested therapies in cases where the treating physician was unsure regarding the next line of treatment. The MP approach was found to have clinical benefit for the individual patient who had a PFS ratio (PFS on MP selected therapy/PFS on prior therapy) of ≥ 1.3.  Among the 86 patient tumors that were profiled with Caris Target Now™:

  • 84 (98%) had a detected molecular target;
  • 66 of the 84 patients were treated with therapies that were linked to their MP results; and
  • 18 (27%) of 66 patients had a PFS ratio of ≥ 1.3 (95% CI, 17% to 38% range; one-sided, one-sample P = .007).

The study investigators concluded that it is possible to identify molecular targets in patients’ tumors. In 27% of the patients, the MP approach resulted in a longer PFS on a MP-based regimen than on the regimen that was based on physician’s choice.  “It was also encouraging to see that the overall survival in these 18 patients was better than that for the whole group of 66 patients (9.7 vs. 5 months),” said Von Hoff.

Of the 66 participants, 27% had breast cancer, 17% had colorectal cancer, and 8% had ovarian cancer; the remainder were classified as miscellaneous.  The improvement in PFS among the various types of cancer patients was as follows: 44% in patients with breast cancer, 36% in those with colorectal cancer, 20% in those with ovarian cancer, and 16% in the miscellaneous group.

The investigators in the study utilized Caris Target Now™ molecular profiling, which is currently available to oncologists and their patients.

“Oncologists commonly expect a 1-in-20 chance of patient response in 3rd- and 4th-line therapies.  This recent study suggests those odds can be improved to 1-in-4 when using therapeutic guidance provided by Caris Target Now™.”

Dr. Jeff Edenfield, a practicing oncologist with US Oncology, and routine user of Caris Target Now™

Since 2008, more than 15,000 cancer patients have received a Caris Target Now™ molecular profile. Caris Target Now™ has been designed to provide treating physicians with therapeutic options, often identifying anti-tumor agents that may not have been considered before. The Caris Target Now™ report is based on the genetic make-up of an individual patient’s tumor cross-referenced with a vast and growing proprietary database of clinical literature, correlating genetic tumor information to therapeutic response. Using biomarker-based therapies has been linked to the likelihood of a positive patient response.

James H. Doroshow, M.D., Director, Division of Cancer Treatment & Diagnosis, National Cancer Institute

In the accompanying JCO editorial, James H. Doroshow, M.D., the Director of the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis, commented that the study by Von Hoff et. al. possessed several limitations. [2] The stated limitations of the study include (i) uncertainty surrounding the achievement of the study’s primary end point based upon use of the time-to-disease progression (TTP) index; (ii) limited prior experience with patients as their own controls, and (iii) lack of study randomization.  Despite these limitations, Dr. Doroshow noted that important lessons can be learned from the study conducted by Von Hoff et. al.

“First and foremost, this study vividly reminds us that the need for therapeutic intervention arises one patient at a time. When we sit with an individual who is trying to live with an advanced solid tumor after having already received several different chemotherapy regimens, it is unlikely that any published prognostic index or gene signature, as currently implemented, will be of much help in decision making—for physicians or for patients. [citation omitted]. Thus, a truly urgent need exists to move past the empiric therapeutic paradigm that launched the first half century of systemic oncologic treatment. [citation omitted]. Von Hoff et al have taken a noteworthy, albeit somewhat flawed, first step in this direction in their attempt to imagine a novel paradigm for cancer therapy, using the techniques of molecular tumor characterization on an individual patient basis. Future investigators of new cancer therapies should learn from this initial effort and focus on how these rapidly evolving molecular tools can be used in the development of an entirely new investigative model for the systemic treatment of cancer.”

Caris is currently conducting and initiating additional studies of Caris Target Now™ molecular tumor profiling through collaboration with leading institutions and cancer centers. 

With 300% growth in utilization in 2010, medical oncologists are recognizing the utility and value of this novel approach in providing improved care to patients. Physician adoption is rapidly accelerating, as Caris recently reached the threshold of providing Caris Target Now™ services to more than 1,000 patients per month. This new introduction for ovarian cancer is most relevant for physicians treating women who have progressed on platinum-based therapy and/or who need guidance for third-line treatment options. Caris Target Now™ for ovarian cancer offers the opportunity for these women to benefit from personalized and targeted therapy guidance based upon molecular profiling.

“Ovarian cancer is a highly-lethal cancer that presents distinct diagnostic and therapeutic challenges, often presenting no major symptoms until the cancer has metastasized,” said Dr. Les Paul, Caris’ Senior Vice President for Medical Affairs. “Choosing the optimal therapeutic intervention at the earliest possible stage is critical to extending progression free survival in ovarian cancer patients. With the introduction of the Caris Target Now™ ovarian profile, we are able to support physicians with as much information as possible, including the latest relevant clinical literature citations to aid them in making the best therapeutic decision possible for each patient.”

Examples of the potential use of an existing clinical trial drug to target a specific molecular characteristic possessed by an ovarian cancer include:

Use of Molecular Profiling By Leading Medical Institutions; Sponsorship By A Charitable Foundation

It should be noted that molecular profiling is already being used in clinical practice at several leading cancer institutions.  At Massachusetts General Hospital, (MGH), The MGH Cancer Centre uses a PCR-based mutation-detection assay and state-of-the-art robotic technology, called “SNaPshot,” to look for 130 known gene mutations in tumor tissue. “We are already using molecular profiling for all our lung cancer patients,” said Jeffrey Settleman, Ph.D., scientific director at the MGH Cancer Center, to Medscape Oncology in 2009. [12] “This has already had an impact on treatment decisions, and it appears to be improving treatment. We have seen better response rates and we hope that this will translate into better survival.”  In fact, MGH is engaged currently in the largest study aimed at matching tumor genomes to potential anticancer treatments. [13] It is our understanding that MGH performs molecular profiling currently on melanoma, leukemia, brain and metastatic breast cancer, and metastatic adenocarcinoma that start in the lung, colon or rectum.

Several other institutions are in the process of developing or have developed their own systems, including the University of Texas M.D. Anderson Cancer Center [14], and the Dana-Farber Cancer Institute [15].  All are striving to profile individual tumors so that therapy can be personalized, which means that it has a better chance of working because it targets specific mutations found in a patient’s tumor. The MP approach also prevents patients from being exposed to drugs that have a limited chance of success, eliminating toxicity and improving quality of life.

We should also note the Clearity Foundation sponsors molecular profiling services on behalf of ovarian cancer patients at no cost. The Clearity Foundation is a 501(c)(3) not-for-profit, founded by Laura Shawver, Ph.D., who is an ovarian cancer survivor and research scientist.  The Clearity Foundation seeks to improve treatment outcomes in recurrent and progressive ovarian cancer patients by providing diagnostic services that determine the molecular profile of the individual patient with the belief that a molecular “blueprint” is crucial to finding appropriate treatments.

About Caris Target Now™

Caris Target Now™ is a comprehensive tumor analysis coupled with an exhaustive clinical literature search, which matches appropriate therapies to patient-specific biomarker information to generate an evidence-based treatment approach. Caris Target Now™ testing provides information that may help when considering potential treatment options.

Caris Target Now™ begins with an immunohistochemistry (IHC) analysis. An IHC test measures the level of important proteins in cancer cells providing clues about which therapies are likely to have clinical benefit and then what additional tests should be run.

If there is access to a frozen sample of patient tissue available, Caris may also run a gene expression analysis by microarray. The microarray test looks for genes in the tumor that are associated with specific treatment options.

As deemed appropriate based on each patient, Caris will run additional tests. Fluorescent In-Situ Hybridization (FISH) is used to examine gene copy number variation (i.e., gene amplification) in the tumor. Polymerase Chain Reaction (PCR) or DNA sequencing is used to determine gene mutations in the tumor DNA.

Caris takes the results from each test and applies the published findings from thousands of the world’s leading cancer researchers. Based on this analysis, Caris Target Now™ identifies potential therapies for patients and their treating physicians to discuss.

Caris Target Now™ was developed and its performance characteristics were determined by Caris, a CLIA-certified medical laboratory in compliance with the U.S. Clinical Laboratory Amendment Act of 1988 and all relevant U.S. state regulations. It has not been approved by the United States Food and Drug Administration.

About Caris Life Sciences

Caris Life Sciences, a leading biosciences company, specializes in the development and commercialization of the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic technologies, in the fields of oncology, dermatopathology, hematopathology, gastrointestinal pathology and urologic pathology. The company provides academic-caliber consultations for patients every day, through its industry-leading team of expert, subspecialty pathologists. Caris also offers advanced molecular analyses of patient samples through prognostic testing services and genomic, transcriptomic, and proteomic profiling to assist physicians in their treatment of cancer. Currently, Caris is developing the Carisome™ platform, a proprietary, blood-based technology for diagnosis, prognosis, and theranosis of cancer and other complex diseases. The company is headquartered in the Dallas metroplex, and operates laboratories at the headquarters, as well as in the Phoenix and Boston metro areas.

About Daniel Von Hoff, M.D., FACP, Executive Director, Caris Life Sciences Clinical Research

Daniel D. Von Hoff, M.D., is currently physician-in-chief and director of translational research at Translational Genomics Research Institute (TGen) in Phoenix, Arizona. He is also chief scientific officer for US Oncology and the Scottsdale Healthcare’s Clinical Research Institute.  He holds an appointment as clinical professor of medicine at the University of Arizona College of Medicine.

Dr. Von Hoff’s major interest is in the development of new anticancer agents, both in the clinic and in the laboratory. He and his colleagues were involved in the beginning of the development of many of the agents now in routine use, including: mitoxantrone, fludarabine, paclitaxel, docetaxel, gemcitabine, irinotecan, nelarabine, capecitabine, lapatinib and others.

At present, Von Hoff and his colleagues are concentrating on the development of molecularly targeted therapies particularly for patients with advanced pancreatic cancer. Dr. Von Hoff’s laboratory interests and contributions have been in the area of in vitro drug sensitivity testing to individualize treatment for the patient, mechanisms of gene amplification, particularly of extrachromosomal DNA, and understanding of and targeting telomere maintenance mechanisms. His laboratory work now concentrates on the discovery of new targets in pancreatic cancer.

Dr. Von Hoff has published more than 543 papers, 133 book chapters, and more than 956 abstracts. Dr. Von Hoff  also served on President Bush’s National Cancer Advisory Board from June 2004 through March 2010.

Dr. Von Hoff is the past president of the American Association for Cancer Research(AACR) (the world’s largest cancer research organization), a fellow of the American College of Physicians, and a member and past board member of the American Society of Clinical Oncology (ASCO). He is a founder of ILEX™ Oncology, Inc. (acquired by Genzyme after Ilex had 2 agents, alemtuzumab and clofarabine approved for patients with leukemia). He is founder and the editor emeritus of Investigational New Drugs – The Journal of New Anticancer Agents; and, editor-in-chief of Molecular Cancer Therapeutics. He is also proud to have been a mentor and teacher for multiple medical students, medical oncology fellows, graduate students, and post-doctoral fellows. He is a co-founder of the AACR/ASCO Methods in Clinical Cancer Research Workshop.

References:

1/ Von Hoff DD, Stephenson JJ Jr, Rosen P, et. al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010 Nov 20;28(33):4877-83. Epub 2010 Oct 4. PubMed PMID: 20921468.

2/ Doroshow JH. Selecting systemic cancer therapy one patient at a time: Is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol. 2010 Nov 20; 28(33):4869-71. Epub 2010 Oct 4. PMID: 20921466.

3/Addition of Dasatinib (Sprycel) to Standard Chemo Cocktail May Enhance Effect in Certain Ovarian Cancers, by Paul Cacciatore, Libby’s H*O*P*E*™, April 19, 2009.

4/UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®), by Paul Cacciatore, Libby’s H*O*P*E*™, November 11, 2009.

5/BMS-345541 + Dasatinib Resensitizes Carboplatin-Resistant, Recurrent Ovarian Cancer Cells, by Paul Cacciatore, Libby’s H*O*P*E*™, July 1, 2010.

6/PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, by Paul Cacciatore, Libby’s H*O*P*E*™, April 23, 2010.

7/ Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriersN Engl J Med. 2009 Jul 9;361(2):123-34. Epub 2009 Jun 24. PMID: 19553641.

8/Audeh MW, Penson RT, Friedlander M, et al. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol 2009;27(supplement):p. 15S.

9/PARP Inhibitor MK-4827 Shows Anti-Tumor Activity in First Human Clinical Study, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 17, 2010.

10/PI3K Pathway: A Potential Ovarian Cancer Therapeutic Target?, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 20, 2009.

11/Endocyte’s EC145 Produces Significant Anti-Tumor Activity In Advanced Stage Chemoresistant Ovarian Cancer Patients, by Paul Cacciatore, Libby’s H*O*P*E*™, October 21, 2009.

12/Massachusetts General Hospital Cancer Center To Genetically Profile All Patient Tumors, by Paul Cacciatore, Libby’s H*O*P*E*™, March 14, 2009.

13/Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results, by Paul Cacciatore, Libby’s H*O*P*E*™, August 3, 2010.

14/An Initiative for Molecular Profiling in Advanced Cancer Therapy (IMPACT) Trial. A Molecular Profile-Based Study in Patients With Advanced Cancer Treated in the Investigational Cancer Therapeutics Program, University of Texas M.D. Anderson Cancer Center, ClinicalTrials.gov Identifier: NCT00851032.

15/Dana-Farber Researchers “OncoMap” The Way To Personalized Treatment For Ovarian Cancer, by Paul Cacciatore, Libby’s H*O*P*E*™, November 16, 2010.

Sources:

Additional Information:

New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition

U.K. researchers develop a new test that could be used to select ovarian cancer patients who will benefit from a new class of drugs called “PARP inhibitors.”

U.K. researchers have developed a new test that could be used to select which patients with ovarian cancer will benefit from a new class of drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors,” according to preclinical research presented at the National Cancer Research Institute (NCRI) Cancer Conference held in Liverpool on November 8th.  According to the test results, approximately 50 percent of all patients with ovarian cancer may benefit from PARP inhibitors.

Dr. Asima Mukhopadhyay Discusses Her Research Into A More Tailored Treatment For Ovarian Cancer

PARP Inhibition & BRCA Gene Mutations: Exploiting Ovarian Cancer’s Inherent Defects

  • Genetics 101

DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called “genes.”

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein. Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene. Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

  • Targeting DNA Repair Through PARP Inhibition

Targeting DNA repair through PARP inhibition in BRCA gene-mutated cancer cells. "DSB" stands for DNA "Double Stand Break." (Photo Credit: AstraZeneca Oncology)

Normally functioning BRCA1 and BRCA2 genes are necessary for DNA repair through a process known as “homologous recombination” (HR).  HR is a form of genetic recombination in which two similar DNA strands exchange genetic material. This process is critical to a cell’s ability to repair its DNA in the event that it becomes damaged, so the cell can continue to function.

A cell’s DNA structure can be damaged by a wide variety of intentional (i.e., select cancer treatments) or unintentional (ultraviolet light, ionizing radiation, man-made chemicals, etc.) factors.  For example, chemotherapy regimens used in the treatment of cancer, including alkylating agents, topoisomerase inhibitors, and platinum drugs, are designed to damage DNA and prevent cancer cells from reproducing.

In approximately 10 percent of inherited ovarian cancers, the BRCA 1 or BRCA2 gene is damaged or mutated.  When the BRCA1 or BRCA2 gene is mutated, a backup type of DNA repair mechanism called “base-excision repair” usually compensates for the lack of DNA repair by HR.  Base-excision repair represents a DNA “emergency repair kit.” DNA repair enzymes such as PARP, whose activity and expression are upregulated in tumor cells, are believed to dampen the intended effect of chemotherapy and generate drug resistance.

When the PARP1 protein – which is necessary for base-excision repair – is inhibited in ovarian cancer cells possessing a BRCA gene mutation, DNA repair is drastically reduced, and the cancer cell dies through so-called “synthetic lethality.”  In sum, PARP inhibitors enhance the potential of chemotherapy (and radiation therapy) to induce cell death.  Healthy cells are unaffected if PARP is blocked because they either contain one or two working BRCA1 or BRCA2 genes which do an effective DNA repair job through use of HR.

  • PARP Inhibitors: A New Class of Targeted Therapy

PARP inhibitors represent a new, targeted approach to treating certain types of cancers. PARP inhibition has the potential to overwhelm cancer cells with lethal DNA damage by exploiting impaired DNA repair function inherent in some cancers, including breast and ovarian cancers with defects in the BRCA1 gene or BRCA 2 gene, and other DNA repair molecules. Inhibition of PARP leads to the cell’s failure to repair single strand DNA breaks, which, in turn, causes double strand DNA breaks. These effects are particularly detrimental to cancer cells that are deficient in repairing double strand DNA breaks and ultimately lead to cancer cell death.

PARP inhibitors are the first targeted treatment to be developed for women with inherited forms of breast and ovarian cancer carrying faults or mutations in a BRCA gene. Early results from clinical trials are showing promise for patients with the rare inherited forms of these cancers.

Study Hypothesis: PARP Inhibitors May Be Effective Against a Large Proportion of Non-Inherited Ovarian Cancers

As noted above, PARP inhibitors selectively target HR–defective cells and have shown good clinical activity in hereditary breast and ovarian cancers associated with BRCA1 or BRCA2 mutations. The U.K. researchers hypothesized that a high proportion (up to 50%) of sporadic (non-inherited) epithelial ovarian cancers could be deficient in HR due to genetic or epigenetic inactivation of the BRCA1, BRCA2, or other HR-related genes, which occur during a woman’s lifetime. Therefore, PARP inhibitors could prove beneficial to a larger group of ovarian cancer patients, assuming a patient’s HR status can be properly identified.

To test this hypothesis, the U.K. researchers developed a functional assay to test the HR status of primary ovarian cancer cultures derived from patients’ ascitic fluid. The test, referred to as the “RAD51 assay,” scans the cancer cells and identifies which tumor samples contain defective DNA repair ability (i.e., HR-deficient) which can be targeted by the PARP inhibitor. The researchers tested the HR status of each culture, and then subjected each one to in vitro cytotoxicity testing using the potent PARP inhibitor PF-01367338 (formerly known as AG-14699).

Study Results: 90% of HR-Deficient Ovarian Cancer Cultures Respond to PARP Inhibition

Upon testing completion, the U.K. researchers discovered that out of 50 primary cultures evaluated for HR status and cytotoxicity to the PARP inhibitor, approximately 40% of the cultures evidenced normal HR activity, while 60 percent of the cultures evidenced deficient HR activity. Cytotoxicity to PARP inhibitors was observed in approximately 90 percent of the HR deficient cultures, while no cytotoxicity was seen in the cultures that evidenced normal HR activity. Specifically, the PARP inhibitor PF-01367338 was found to selectively block the spread of ovarian tumor cells with low RAD51 expression.

Conclusion

Based upon the findings above, the U.K. researchers concluded that HR-deficient status can be determined in primary ovarian cancer, and that such status correlates with in vitro response to PARP inhibition.  Accordingly, the researchers concluded that potentially 50 to 60 percent of ovarian cancers could benefit from PARP inhibitors, but they note that use of the RAD51 assay as a biomarker requires additional clinical trial testing.  Although the RAD51 assay test that was used by the U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Upon presentation of the testing results, Dr. Asima Mukhopadhyay said:

“Our results show that this new test is almost 100 percent effective in identifying which ovarian cancer patients could benefit from these promising new drugs.  We have only been able to carry out this work because of the great team we have here which includes both doctors and scientists.”

The team based at Queen Elizabeth Hospital, Gateshead and the Newcastle Cancer Centre at the NICR, Newcastle University collaborated with Pfizer to develop the new assay to test tumor samples taken from ovarian cancer patients when they had surgery.

Dr. Mukhopadhyay added:

“Now we hope to hone the test to be used directly with patients and then carry out clinical trials. If the trials are successful we hope it will help doctors treat patients in a personalised and targeted way based on their individual tumour. It is also now hoped that PARP inhibitors will be useful for a broad range of cancers and we hope this test can be extended to other cancer types.”

Dr. Lesley Walker, Cancer Research UK’s director of cancer information, said:

“It’s exciting to see the development of promising new ‘smart’ drugs such as PARP inhibitors. But equally important is the need to identify exactly which sub-groups of patients will benefit from these new treatments. Tests like this will become invaluable in helping doctors get the most effective treatments quickly to patients, sparing them from unnecessary treatments and side effects.”

Sources:

Additional Information:

________________________________________

About The Researchers

Dr. Asima Mukhopadhyay is a doctor and clinical research fellow working at the Queen Elizabeth Hospital, Gateshead and the Northern Institute for Cancer Research at Newcastle University. Queen Elizabeth Hospital is run by Gateshead Health NHS Foundation Trust and is the home for gynecological oncology for the North East of England and Cumbria. She received a bursary to attend the conference, which was awarded on the merit of her work.

Key researchers on the study included Dr. Richard Edmondson, who was funded by the NHS, and Professor Nicola Curtin, who was funded by the Higher Education Funding Council. Dr Asima Mukhopadhyay is funded by the NHS.

Dr Richard Edmondson is a consultant gynecological oncologist at the Northern Gynaecological Oncology Centre, Gateshead and a Senior Lecturer at the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, and is a member of the research team.

Nicola Curtin is Professor of Experimental Cancer Therapeutics at Newcastle University and is the principal investigator of this project.

Current and future work involves working closely with Pfizer. Pfizer developed one of the PARP inhibitors and supported this project.

About The Newcastle Cancer Centre

The Newcastle Cancer Centre at the Northern Institute for Cancer Research is jointly funded by three charities: Cancer Research UK, Leukaemia and Lymphoma Research, and the North of England Children’s Cancer Research Fund.  Launched in July 2009, the Centre is based at the Northern Institute for Cancer Research at Newcastle University.  The Centre brings together some of the world’s leading figures in cancer research and drug development. They play a crucial role in delivering the new generation of cancer treatments for children and adults by identifying new drug targets, developing new drugs and verifying the effectiveness and safety of new treatments. This collaborative approach makes it easier for researchers to work alongside doctors treating patients, allowing promising new treatments to reach patients quickly.

About the NCRI Cancer Conference

The National Cancer Research Institute (NCRI) Cancer Conference is the UK’s major forum for showcasing the best British and international cancer research. The Conference offers unique opportunities for networking and sharing knowledge by bringing together world leading experts from all cancer research disciplines. The sixth annual NCRI Cancer Conference was held from November 7-10, 2010 at the BT Convention Centre in Liverpool. For more information visit www.ncri.org.uk/ncriconference.

About the NCRI

The National Cancer Research Institute (NCRI) was established in April 2001. It is a UK-wide partnership between the government, charity and industry which promotes cooperation in cancer research among the 21 member organizations for the benefit of patients, the public and the scientific community. For more information visit www.ncri.org.uk.

NCRI members include: the Association of the British Pharmaceutical Industry (ABPI); Association for International Cancer Research; Biotechnology and Biological Sciences Research Council; Breakthrough Breast Cancer; Breast Cancer Campaign; CancerResearch UK; CHILDREN with LEUKAEMIA, Department of Health; Economic and Social Research Council; Leukaemia & Lymphoma Research; Ludwig Institute for Cancer Research; Macmillan Cancer Support; Marie Curie Cancer Care; Medical Research Council; Northern Ireland Health and Social Care (Research & Development Office); Roy Castle Lung Cancer Foundation; Scottish Government Health Directorates (Chief Scientist Office);Tenovus; Welsh Assembly Government (Wales Office of Research and Development for Health & Social Care); The Wellcome Trust; and Yorkshire Cancer Research.

Peptide Being Tested for Atherosclerosis Inhibits Ovarian Cancer Growth; Clinical Trial Planned

A drug in testing to treat atherosclerosis significantly inhibited growth of ovarian cancer in both human cell lines and mouse models, marking the first such report of a peptide being used to fight malignancies, according to a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center.

A drug in testing to treat atherosclerosis significantly inhibited growth of ovarian cancer in both human cell lines and mouse models, marking the first such report of a peptide being used to fight malignancies, according to a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center.

The study follows a previous discovery by the same group showing that a protein called apolipoprotein A-I (apoA-I) may be used as a biomarker to diagnose early stage ovarian cancer in patients, when it typically is asymptomatic and much easier to treat. These earlier findings could be vital to improving early detection, as more than 85 percent of ovarian cancer cases present in the advanced stages, when the cancer has already spread and patients are more likely to have a recurrence after treatment, said Dr. Robin Farias-Eisner, chief of gynecologic oncology and co-senior author of the study with Dr. Srinu Reddy, a professor of medicine.

Robin Farias-Eisner, M.D., Ph.D., Chief of Gynecologic Oncology, UCLA Jonsson Comprehensive Cancer Center

“The vast majority of ovarian cancer patients are diagnosed with advanced disease and the vast majority of those, after surgery and chemotherapy, will eventually become resistant to standard therapy,” Farias-Eisner said. “That’s the reason these patients die. Now, with this peptide as a potential therapy, and if successful in clinical trials, we may have a novel effective therapy for recurrent, chemotherapy-resistant ovarian cancer, without compromising the quality of life during treatment.”

The study was published Nov. 1, 2010 in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

In their previous work, Farias-Eisner, Reddy and their research teams identified three novel biomarkers that they used to diagnose early stage ovarian cancer. In September 2009, the U.S. Food and Drug Administration cleared the first laboratory test that can indicate the likelihood of ovarian cancer, OVA1™ Test, which includes the three biomarkers identified and validated by Farias-Eisner, Reddy and their research teams.

They observed that one of the markers, apoA-I, was decreased in patients with early stage disease. They wondered why the protein was decreased and set out to uncover the answer. They speculated that the protein might be protective, and may be preventing disease progression.

The protein, apoA-I, is the major component of HDL [high-density lipoprotein], the good cholesterol, and plays an important role in reverse cholesterol transport by extracting cholesterol and lipids from cells and transferring it to the liver for extraction. The protein also has anti-inflammatory and antioxidant properties. Because lipid transport, inflammation and oxidative stress are associated with the development and progression of cancer, Farias-Eisner and Reddy hypothesized that the reduced levels of apoA-I in ovarian cancer patients may be causal in disease progression.

Mice that were engineered to have many copies of human apoA-I gene showed very little cancer development when induced with ovarian cancer, while the mice without the extra copies of apoA-I showed much more disease. The mice with extra copies of the apoA-I gene also lived 30 to 50 percent longer than those who didn’t receive it.

Farias-Eisner and Reddy wanted to treat the mice that had more cancer with the protein apoA-I, but it was too large to conveniently administer, having 243 amino acids. The researchers then turned to apoA-I mimetic peptides—only 18 amino acids in length—that are being tested for cardiovascular diseases. That project had been ongoing for a number of years at UCLA, said Reddy, who is also a part of the cardiovascular research team led by Dr. Alan M. Fogelman, executive chair of the Department of Medicine.

Srinivasa T. Reddy, Ph.D., M.Sc., Professor, Division of Cardiology, Depart. of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles

“The smaller peptides mimic the larger apoA-I protein and provided us with agents we could give to the mouse to see if it was effective in fighting ovarian cancer,” said Reddy. “One of the peptides was being tested as an experimental therapy for atherosclerosis, so we already have some information on how it’s being tolerated in humans, which would be vital information to have if we progressed to human studies in ovarian cancer.”

The peptide, thus far, has caused little to no side effects in atherosclerosis patients, Reddy said, a hopeful sign that it might be well tolerated in ovarian cancer patients.

The mice that were given the peptide by injection had about 60 percent less cancer than the mice that did not receive the peptide, Farias-Eisner said. The peptide also was given in drinking water or in mouse food and proved to be as effective when administered that way.

“It was an exciting result,” Farias-Eisner said. “It looked like we had something that could be ingested or injected that might be very effective against ovarian cancer progression.”

Farias-Eisner said the peptide avidly binds oxidized lipids, one of which is known to stimulate cancer cells to survive and multiply. In the mouse studies, the mice that received peptide had significantly lower levels of this cancer promoting lipid.

An early phase clinical trial is being planned testing the peptide in patients with aggressive ovarian cancers that are resistant to chemotherapy, a group of patients whose median survival is just 40 months. Farias-Eisner hopes the study will be started and completed within two years.

The study was funded by the Womens Endowment, the Carl and Roberta Deutsch Family Foundation, the Joan English Fund for Women’s Cancer Research, the National Institutes of Health and the West Los Angeles Veterans Affairs Medical Center.

UCLA’s Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation’s largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Sources:

The Cancer Biomarker Conundrum: Too Many False Discoveries

The boom in cancer [including ovarian] biomarker investments over the past 25 years has not translated into major clinical success. The reasons for biomarker failures include problems with study design and interpretation, as well as statistical deficiencies, according to an article published online August 12 in The Journal of the National Cancer Institute.

The boom in cancer [including ovarian] biomarker investments over the past 25 years has not translated into major clinical success. The reasons for biomarker failures include problems with study design and interpretation, as well as statistical deficiencies, according to an article published online August 12 in The Journal of the National Cancer Institute.

The National Institutes of Health defines a biomarker as “a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” In the past decade, there have been numerous biomarker discoveries, but most initially promising biomarkers have not been validated for clinical use.

Eleftherios P. Diamandis, M.D., Ph.D., Head, Section of Clinical Biochemistry, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada

To understand why so-called biomarker “breakthroughs” have not made it to the clinic, Eleftherios P. Diamandis, M.D., Ph.D., professor of pathology and laboratory medicine at Mount Sinai Hospital in Toronto and associate scientist at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, reviewed some biomarkers initially hailed as breakthroughs and their subsequent failings.

Diamandis first describes the requirements for biomarkers to be approved for clinical use: A biomarker must be released into circulation in easily detectable amounts by a small asymptomatic tumor or its micro-environment; and it should preferably be specific for the tissue of origin. Also, if the biomarker is affected by a non-cancer disease, its utility for cancer detection may be compromised. For example, the prostate-specific antigen (PSA) biomarker, which is used to detect prostate cancer, is also elevated in benign prostatic hyperplasia.

Diamandis looks at seven biomarkers that have emerged in the past 25 years, all of which were considered promising when they were first described. These include nuclear magnetic resonance of serum for cancer diagnosis; lysophosphatidic acid for ovarian cancer; four– and six-parameter diagnostic panels for ovarian cancer; osteopontin for ovarian cancer; early prostate cancer antigen-2 (EPCA-2) for prostate cancer detection; proteomic profiling of serum by mass spectrometry for ovarian cancer diagnosis; and peptidomic patterns for cancer diagnosis. Problems ranged from inappropriate statistical analysis to biases in case patient and control subject selection. For example, the problems with EPCA-2 included reporting values that were beyond the detection limit of the assay and using inappropriate reagents to test EPCA-2, such as solid surfaces coated with undiluted serum.

Diamandis concludes that “problems with pre-analytical, analytical, and post-analytical study design could lead to the generation of data that could be highly misleading.”

Sources:

The Cancer Biomarker Conundrum: Too Many False Discoveries, Journal of the National Cancer Institute Advance Access,  published on August 12, 2010, DOI 10.1093/jnci/djq335.

Eleftherios P. Diamandis. Cancer Biomarkers: Can We Turn Recent Failures into Success? Commentary, Journal of the National Cancer Institute Advance Access published on August 12, 2010, DOI 10.1093/jnci/djq306.

Georgia Tech’s Ovarian Cancer Early Detection Blood Test Exhibits High Accuracy in Small Study; Larger Study Planned

Scientists at the Georgia Institute of Technology have attained very promising results on their initial investigations of a new test for ovarian cancer. Using a new technique involving mass spectrometry of a single drop of blood serum, the test correctly identified women with ovarian cancer in 100 percent of the 94 patients tested. Because of the extremely low prevalence of ovarian cancer in the general population (∼0.04%), extensive prospective testing will be required to evaluate the test’s potential utility in general screening applications.

Scientists at the Georgia Institute of Technology have attained very promising results on their initial investigations of a new test for ovarian cancer. Using a new technique involving mass spectrometry of a single drop of blood serum, the test correctly identified women with ovarian cancer in 100 percent of the 94 patients tested. The results can be found online in the journal Cancer Epidemiology, Biomarkers, & Prevention Research.

John McDonald, Ph.D., Professor, Associate Dean for Biology Program Development, Georgia Institute of Technology; Chief Science Officer, Ovarian Cancer Institute

Facundo Fernandez, Ph.D., Associate Professor, School of Chemistry & Biochemistry, Georgia Institute of Technology

“Because ovarian cancer is a disease of relatively low prevalence, it’s essential that tests for it be extremely accurate. We believe we may have developed such a test,” said John McDonald, chief research scientist at the Ovarian Cancer Institute (Atlanta) and professor of biology at Georgia Tech.

The measurement step in the test, developed by the research group of Facundo Fernandez, associate professor in the School of Chemistry and Biochemistry at Tech, uses a single drop of blood serum, which is vaporized by hot helium plasma. As the molecules from the serum become electrically charged, a mass spectrometer is used to measure their relative abundance. The test looks at the small molecules involved in metabolism that are in the serum, known as metabolites. Machine learning techniques developed by Alex Gray, assistant professor in the College of Computing and the Center for the Study of Systems Biology, were then used to sort the sets of metabolites that were found in cancerous plasma from the ones found in healthy samples. Then, McDonald’s lab mapped the results between the metabolites found in both sets of tissue to discover the biological meaning of these metabolic changes.

The assay did extremely well in initial tests involving 94 subjects. In addition to being able to generate results using only a drop of blood serum, the test proved to be 100 percent accurate in distinguishing sera from women with ovarian cancer from normal controls. In addition it registered neither a single false positive nor a false negative

The group is currently in the midst of conducting the next set of assays, this time with 500 patients.

“The caveat is we don’t currently have 500 patients with the same type of ovarian cancer, so we’re going to look at other types of ovarian cancer,” said Fernandez. “It’s possible that there are also signatures for other cancers, not just ovarian, so we’re also going to be using the same approach to look at other types of cancers. We’ll be working with collaborators in Atlanta and elsewhere.”

In addition to having a relatively low prevalence, ovarian cancer is also asymptomatic in the early stages. Therefore, if further testing confirms the ability to accurately detect ovarian cancer by analyzing metabolites in the serum of women, doctors will be able detect the disease early and save many lives.

Libby’s H*O*P*E*™ Comment:

Alex Gray, Ph.D., Assistant Professor, College of Computing & Center for the Study of Systems Biology, Georgia Institute of Technology

This study involved testing the metabolite levels in blood sera from 44 women diagnosed with serous papillary ovarian cancer (stages I-IV) and 50 healthy women or women with benign conditions.  The assay distinguished between the cancer and control groups with an unprecedented 99% to 100% accuracy. The method possesses significant clinical potential as a cancer diagnostic tool.  Because of the extremely low prevalence of ovarian cancer in the general population (∼0.04%), extensive prospective testing will be required to evaluate the test’s potential utility in general screening applications.

Sources:

Initial Trials On New Ovarain Cancer Tests Exhibit Extremely High Accuracy, News Release, Georgia Institute of Technology, August 11, 2010.

Zhou M,Guan W, Walker LD, et. al. Rapid Mass Spectrometric Metabolic Profiling of Blood Sera Detects Ovarian Cancer with High Accuracy. Cancer Epidemiol Biomarkers Prev 1055-9965.EPI-10-0126; Published OnlineFirst August 10, 2010; doi:10.1158/1055-9965.EPI-10-0126

Abbott Labs Seeks FDA 510(k) Clearance For New Automated Ovarian Cancer Detection Test

A new diagnostic tool physicians can use to monitor patients for the most common form of ovarian cancer may soon be available in the United States.

Abbott Laboratories’ ARCHITECT HE4 assay uses a simple blood test to help in monitoring for the recurrence or progression of epithelial ovarian cancer. If approved by the FDA, this important immunoassay would be the first automated HE4 test available in the United States.

A new diagnostic tool physicians can use to monitor patients for the most common form of ovarian cancer may soon be available in the United States.  Abbott Laboratories’ (Abbott’s) ARCHITECT [Human Epididymal Protein 4] HE4 assay uses a simple blood test to help in monitoring for the recurrence or progression of epithelial ovarian cancer. If approved by the U.S. Food & Drug Administration (FDA), this important immunoassay would be the first automated HE4 test available in the United States.

The 2003 Hellstrom et al. study of known ovarian cancer biomarkers found that HE4, which has been detected in high levels in the blood of some ovarian cancer patients, shows the highest sensitivity and specificity of any other marker and is considered the best single marker for stage 1 of the disease.

According to the American Cancer Society, the five-year survival rate of ovarian cancer patients is 46 percent. However, when the disease is diagnosed and treated earlier, the survival rate increases to 93 percent. Less than 20 percent of all ovarian cancer is found in the early stage.

“The ability to monitor the recurrence or progression of ovarian cancer is a critical part of patient care. The ARCHITECT HE4 assay has the potential to be a powerful tool for both physicians and patients in the management of the disease,” said Michael Warmuth, Senior Vice President, Diagnostics, Abbott.

Abbott partnered with Fujirebio Diagnostics, Inc. in the development of the assay. The ARCHITECT HE4 assay is approved for use in Europe, as well as in other countries in Asia Pacific and Latin America. It is currently an investigational device in the United States.

About ARCHITECT HE4 Assay

The ARCHITECT HE4 assay is designed to be used as an aid in monitoring recurrence or progressive disease in patients with epithelial ovarian cancer, and must be used in conjunction with other clinical data. The ARCHITECT HE4 assay should not be used as a cancer screening test. In addition, certain types of cancer (e.g., mucinous or germ cell tumors) rarely express HE4, and the use of the ARCHITECT HE4 assay is not recommended for monitoring patients with those types of cancer.

About Ovarian Cancer

Ovarian cancer is the leading cause of death from gynecological cancers and the fifth-leading cause of cancer death in women. An estimated one in 71 women will develop ovarian cancer in their lifetimes. Women who are postmenopausal are at the greatest risk for ovarian cancer.

About Abbott Diagnostics

Abbott Diagnostics is a global leader in in vitro diagnostics (IVD) and offers a broad range of innovative instrument systems and tests for hospitals, reference labs, blood banks, physician offices and clinics. With more than 69,000 institutional customers in more than 100 countries, Abbott’s diagnostic products offer customers automation, convenience, cost effectiveness and flexibility. The history of Abbott Diagnostics is filled with examples of first-of-a-kind products and significant technological advancements, including the development of the very first diagnostic test to detect HIV.

About Abbott’s Diagnostics Businesses

Abbott is a global leader in in vitro diagnostics and offers a broad range of innovative instrument systems and tests for hospitals, reference labs, molecular labs, blood banks, physician offices and clinics. With more than 69,000 customers in more than 100 countries, Abbott’s diagnostic products offer customers automation, convenience, bedside testing, cost effectiveness and flexibility. Abbott has helped transform the practice of medical diagnosis from an art to a science through the company’s commitment to improving patient care and lowering costs.

About Abbott

Abbott (NYSE: ABT) is a global, broad-based health care company devoted to the discovery, development, manufacture and marketing of pharmaceuticals and medical products, including nutritionals, devices and diagnostics. The company employs more than 72,000 people and markets its products in more than 130 countries.

References:

  • FDA 510(k) Clearances – Overview, Device Approvals & Clearances, Products & Medical Procedures, Medical Devices, U.S. Food & Drug Administration, U.S. Department of Health & Human Services.

Additional Information:

Anderson GL, McIntosh M, Wu L, et. al. Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study. J Natl Cancer Inst. 2010 Jan 6;102(1):26-38. Epub 2009 Dec 30. PubMed PMID: 20042715;PubMed Central PMCID: PMC2802285.

Andersen MR, Goff BA, Lowe KA, et. al. Use of a Symptom Index, CA125, and HE4 to predict ovarian cancer. Gynecol Oncol. 2009 Nov 27. [Epub ahead of print] PubMed PMID: 19945742.

Moore RG, McMeekin DS, Brown AK, et. alA novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009 Jan;112(1):40-6. Epub 2008 Oct 12. PubMed PMID: 18851871.

Hellstrom I, Hellstrom KE. SMRP and HE4 as biomarkers for ovarian carcinoma when used alone and in combination with CA125 and/or each other. Adv Exp Med Biol. 2008;622:15-21. Review. PubMed PMID: 18546615.

Havrilesky LJ, Whitehead CM, Rubatt JM, et. al. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence. Gynecol Oncol. 2008 Sep;110(3):374-82. Epub 2008 Jun 27. PubMed PMID: 18584856.

Moore RG, Brown AK, Miller MC, et. al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol. 2008 Feb;108(2):402-8. Epub 2007 Dec 3. PubMed PMID:  18061248.

Rosen DG, Wang L, Atkinson JN, et. al. Potential markers that complement expression of CA125 in epithelial ovarian cancer. Gynecol Oncol. 2005 Nov;99(2):267-77. Epub 2005 Aug 2.  PubMed PMID: 16061277.

Drapkin R, von Horsten HH, Lin Y, et. al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005 Mar 15;65(6):2162-9. PubMed PMID: 15781627.

Elevated Proteins May Warn of Ovarian Cancer, But Sufficient Lead Time & Predictive Value Still Lacking

Fred Hutchinson Cancer Center researchers discovered that concentrations of the serum biomarkers CA125, human epididymis protein 4 (HE4), and mesothelin began to rise 3 years before clinical diagnosis of ovarian cancer, according to a new study published online December 30 in the Journal of the National Cancer Institute. However, the biomarkers became substantially elevated only in the last year prior to diagnosis. … In an accompanying editorial to the study results reported by Anderson et. al., Patricia Hartge, ScD, of the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, applauds the researchers for taking the field one step closer to successful screening study designs by showing that the levels of certain biomarkers do not increase early enough to be used for screening.

Fred Hutchinson Cancer Center researchers discovered that concentrations of the serum biomarkers CA125, human epididymis protein 4 (HE4), and mesothelin began to rise 3 years before clinical diagnosis of ovarian cancer, according to a new study published online December 30 in the Journal of the National Cancer Institute (JNCI). [1] However, the biomarkers became substantially elevated only in the last year prior to diagnosis.

Garnet L. Anderson, Ph.D., Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.

CA125, HE4, mesothelin, B7-H4, decoy receptor 3, and spondin-2 have been identified as potential ovarian cancer serum biomarkers, but their behavior in the prediagnostic period, with the exception of CA125, has not been evaluated.  In the JNCI study, Garnet L. Anderson, Ph.D., of the Division of Public Health Sciences at the Fred Hutchinson Cancer Research Center in Seattle, and colleagues analyzed prediagnostic serum samples and patient data from the Carotene and Retinol Efficacy Trial (CARET), a randomized, double-blind, placebo-controlled chemoprevention trial testing the effects of beta-carotene and retinol on lung cancer incidence among individuals at high risk for lung cancer. Prediagnostic serum samples (taken up to 18 years prior to diagnosis) were obtained for 34 CARET patients with ovarian cancer and 70 matched control CARET subjects. Changes in the levels of these biomarkers prior to ovarian cancer diagnosis were analyzed.

Anderson et. al. discovered that concentrations of CA125, HE4, and mesothelin (but not B7-H4, decoy receptor 3, and spondin-2) began to increase slightly in cancer patients relative to control subjects approximately 3 years before diagnosis, but became substantially elevated within one year prior to diagnosis. Thus, the diagnostic value of these biomarkers is limited because accuracy only increased shortly before diagnosis. “Although these markers are not accurate enough to prompt early intervention in existing screening protocols, the multivariable regression analyses identified modest but statistically significant increases in risk associated with CA125, HE4, and mesothelin, which are consistent with many of the established epidemiological risk factors for ovarian cancer,” say the authors of the study.

“I still think biomarkers may play a role in a cost-effective screening program, although none of these seem accurate enough either alone or together to justify their use in average-risk women,” Anderson told Medscape Oncology. “I do not know of any other currently identified biomarkers that hold more promise than these, but there has been a massive effort over the last few years to identify candidates and not all have been thoroughly vetted,” said Dr. Anderson.

One problem, cites Dr. Anderson, may lie in the approach used in identifying potential ovarian cancer biomarkers. “Most of the discovery work done so far has been conducted in women with advanced-stage disease and compared them to healthy women,” she explained. “If discovery work were done in samples like the ones we used here, representing specimens collected months to years prior to the advanced stage diagnosis, we might have a better chance of finding earlier signals of aggressive disease.”

Another opportunity for improving screening and early diagnosis lies in imaging, she adds. “Currently the most common and only affordable imaging option that could be considered for routine screening is transvaginal ultrasound, but it performs poorly in terms of accurately determining those women [who] have ovarian cancer from those who do not,” said Dr. Anderson. “A substantial improvement in this area would be very exciting.”

Study Limitations Cited By JNCI Editors

The JNCI editors state three limitations that they believe are associated with the study by Anderson et. al. First, the study sample size was small.  Second, all women who participated in CARET had a history of heavy smoking, and therefore, the JNCI editors believe that the blood serum testing results obtained by Anderson et. al. may not apply to other non-smoking groups. Third, the blood collected from women participating in CARET was collected at different times, but only a few samples were collected during the last 2–3 years before ovarian cancer diagnosis.

Designing Ovarian Cancer Early Detection Programs — Accompanying JNCI Editorial

Patricia Hartge, Sc.D. Deputy Director, Epidemiology and Biostatistics Program, Division of Cancer Epidemiology & Genetic, National Cancer Institute

In an accompanying editorial to the study results reported by Anderson et. al., Patricia Hartge, ScD, of the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, applauds the researchers for taking the field one step closer to successful screening study designs by showing that the levels of certain biomarkers do not increase early enough to be used for screening. [2]

Dr. Hartge notes that despite the discovery that CA125 and other serum markers increase before the clinical onset of ovarian cancer, it has been exceedingly difficult to devise a successful ovarian cancer early screening program for asymptomatic women. Nevertheless, Hartge believes that Anderson et al. take a valuable step toward the design of such a successful screening program by demonstrating why screening regimens that are based on markers, or panels of markers, can fail. Specifically, the researchers discovered that blood levels of CA125, HE4, mesothelin, and three other promising markers did not increase early enough in the course of the disease to allow detection in early stages. Dr. Hartge emphasizes that the markers typically rose within one year of the disease symptoms that led to an accurate diagnosis, and therefore, many of the ovarian cancer patients were diagnosed with advanced stage disease.

Hartge further states “[t]hat the results of Anderson et al. are not the last word in serum markers or in combinations of markers.” “Serum markers likely will form a key element in any screening regimen, with the lead time and other parameters of each marker or combination of markers being taken into account. The careful evaluation technique applied in the current study fits into a staged approach necessary for testing performance of early markers of disease.” Hartge adds that “[o]nly the time-consuming, expensive, and demanding randomized clinical trial can reveal whether an early detection program that includes the biomarkers can save lives.”

In support of her position, Dr. Hartge observes that current randomized trials are testing the value of different screening programs that are built on combinations of CA125, ultrasound, and risk factor data (e.g., family history and age). After four rounds of screening 34,261 postmenopausal women for ovarian cancer with both CA125 and ultrasound, University of Alabama at Birmingham School of Medicine investigators of the large U.S. screening trial observed that the predictive value of a positive screen was quite low — approximately 1%. Of the 60 screen-detected cancers, 72% had already advanced to at least stage III. [3] In addition, of every 20 women who underwent surgery after a positive screen, only one women was diagnosed with cancer. Furthermore, in a recent UK trial with a slightly different design, positive predictive values from the first round of screening were higher; 35% in the 50,078 women whose risk was assessed with CA125 and risk factor data, followed by ultrasound only if indicated, and 3% in the 50,639 women screened first with ultrasound. [4] The effects on mortality in both trials remain to be determined.

Confronting The “Daunting Arithmetic” Required To Detect Early Stage Ovarian Cancer

Based upon the foregoing, Dr. Hartge highlights the “daunting arithmetic” required to detect early stage ovarian cancer. In the U.S., Surveillance, Epidemiology and End Results (SEER) data indicates that incidence amounts to 13 cases of ovarian cancer per 100,000 woman per year, referred to by Dr. Hartge as the “proverbial needles in the haystack.” [5] So as not to present a problem without a potential solution, Hartge provides a roadmap to additional factors that may help future researchers develop early screening methods to identify those rare cases of ovarian cancer in the general population.  Notably, SEER data also indicates that incidence of ovarian cancer steadily increases with age from 21 cases per 100,000 women per year within the 50-54 age range to 57 cases per 100,000 women per year within the 80-84 age range. [6] Furthermore, family history, low parity, and more ovulations over a woman’s lifetime predict additional risk, with the strongest but least common predictor being a mutation in the BRCA1 or BRCA2 gene. Thus, the general approach suggested by Hartge focuses on women with higher baseline risks, for whom the predictive value of a positive serum test tends to increase. Dr. Hartge believes that the performance of an overall screening program will improve by targeting higher-risk subgroups of women for screening by combining personal history, genetic abnormality status, and levels of serum markers in one prediction model. With ongoing advances in understanding the origin and causes of ovarian cancer, Hartge states that the risk models that are useful for screening programs should also improve.

Further technology advancements may also improve future ovarian cancer early detection screening models, says Hartege. For example, a screening program that is based on a panel of biomarkers can be improved by developing new medical imaging technology that is more specific than current ultrasound technology.  If better imaging existed, fewer women would undergo surgery following a suspicious biomarker finding.  Similarly, development of less invasive surgery could further reduce harmful side effects.  Although Hartge observes that a highly accurate biomarker(s) or an overall screening program does not yet exist, she also explains that the current study by Anderson et. al., with its sobering implications, brings future researchers closer to understanding the crucial elements in designing an effective early detection program for ovarian cancer.

References:

1/Anderson GL , McIntosh M, Wu L, et. al. Assessing Lead Time of Selected Ovarian Cancer Biomarkers: A Nested Case–Control Study. Journal of the National Cancer Institute Advance Access published on January 6, 2010, DOI 10.1093/jnci/djp438. J. Natl. Cancer Inst. 102: 26-38.

2/Hartge P. Designing Early Detection Programs for Ovarian Cancer. Journal of the National Cancer Institute Advance Access published on January 6, 2010, DOI 10.1093/jnci/djp450. J. Natl. Cancer Inst. 102: 3-4.

3/Partridge E, Kreimer AR, Greenlee RT, et al. Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol (2009) 113(4):775–782. [PMCID: PMC2728067; PMID: 19305319].

4/Menon U, Gentry-Maharaj A, Hallett R, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol (2009) 10(4):327–340. [PMID: 19282241]

5/ Horner MJ, Ries LAG, Krapcho M, et al, eds. SEER Cancer Stat Fact Sheets (2009) Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/statfacts/html/ovary.html. Accessed December 2, 2009.

6/Horner MJ, Ries LAG, Krapcho M, et. al., eds. SEER Cancer Statistics Review, 1975-2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006, based on November 2008 SEER data submission, posted to the SEER web site, 2009 [See Table 21.6: Incidence & Mortality Rates By Age].

Sources:

UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®)

The drug dasatinib (Sprycel®), approved for use by the U.S. Food and Drug Administration in patients with specific types of leukemia, significantly inhibited the growth and invasiveness of ovarian cancer cells and also promoted their death, say UCLA researchers in the November 10th issue of the British Journal of Cancer. The drug, when paired with a chemotherapy regimen, was even more effective in fighting ovarian cancer cell lines in which signaling of the Src family kinases — associated with approximately one-third of ovarian cancers– is activated. Clinical trials that involve the testing of dasatinib against ovarian cancer and solid tumors are currently ongoing.

Researchers affiliated with the University of California, Los Angeles (UCLA), Mayo Clinic and Harvard Medical School announced that they have established a biological rationale to support the clinical study of the U.S. Food & Drug Administration (FDA)-approved leukemia drug dasatinib (U.S. brand name: Sprycel®), either alone or in combination with chemotherapy, in patients with ovarian cancer. The study appears in the November 10th edition of the British Journal of Cancer.

Background

Dasatinib is an FDA-approved drug for the treatment of chronic myeloid leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia (ALL). Dasatinib is a small-molecule inhibitor that targets several tyrosine kinases, including the Src kinase family, Ephrin type-A receptor 2 ( EphA2) , and the focal adhesion kinase (FAK).

Src is the prototypic member of a family of nine non-receptor tyrosine kinases (Src, Lyn, Fyn, Lck, Hck, Fgr, Blk, Yrk, and Yes). The Src family kinase (SFK) proteins regulate four main cellular fuctions that ultimately control the behavior of transformed cancer cells:  cell proliferation, adhesion, invasion, and motility.

Eph receptors and ephrins are integral players in cancer formation and progression, and are associated with advanced ovarian cancer and poor clinical outcome.

FAK is a non-receptor tyrosine kinase involved in the regulation of cell adhesion, survival, and migration.  Preclinical studies indicate that FAK plays a signficant role in ovarian cancer cell migration and invasion.

Dasatinib Study Methodology & Findings

slamon1

One of the dasatinib study authors is Dennis J. Slamon, M.D. Ph.D. Dr. Slamon is the Director of Clinical/Translational Research & Director of the Revlon/UCLA Women's Cancer Research Program, at the UCLA Jonsson Comprehensive Cancer Center. He is also the co-discoverer of Herceptin®, a targeted therapy that revolutionized the treatment of HER-2 positive breast cancer.

The researchers carried out the study by testing the effects of dasatinib on human ovarian cancer cells in vitro, using a panel of 34 established human ovarian cancer cell lines.  The 34 cell lines selected were representative of the major epithelial ovarian cancer subtypes:

On this basis, the researchers examined the effects of dasatinib on ovarian tumor cell proliferation, invasion, apoptosis, and cell-cycle arrest.  To more fully understand the activity of dasatinib, the researchers also studied the efficacy of chemotherapeutic drugs (i.e., carboplatin and paclitaxel) in combination with dasatinib against ovarian cancer cells that were previously determined to be dasatinib-sensitive.

The overarching goals of the study were (i) to provide a rationale to test dasatinib as a single agent or in combination with chemotherapy in patients with ovarian cancer, and (ii) to identify molecular markers that may help define subsets of ovarian cancer patients most likely to benefit from treatment with dasatinib.

Significant findings reported in the dasatinib study are summarized below.

  • Concentration-dependent, anti-proliferative effects of dasatinib were seen in all ovarian cancer cell lines tested.
  • Dasatinib significantly inhibited tumor cell invasion, and induced tumor cell death, but was less effective in causing tumor cell-cycle arrest.
  • At a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for dasatinib plus carboplatin or paclitaxel.
  • 24 out of 34 (71%) representative ovarian cancer cell lines were highly sensitive (i.e.,  ≥ 60% growth inhibition) to dasatinib.
  • 6 cells lines were moderately sensitive (i.e., 40% – 59% growth inhibition) to dasatinib.
  • 4 cell lines were resistant (i.e., < 40% growth inhibition) to dasatinib.
  • When comparing dasatinib sensitivity between cell lines based solely upon histological subtype (i.e., serous papillary, clear cell, endometrioid, mucinous, and undifferentiated ovarian cancer cell lines), no single histological subtype was more sensitive than another.
  • Ovarian cancer cell lines with high expression of Yes, Lyn, Eph2A, caveolin-1 and 2, moesin, annexin-1 and 2 and uPA (urokinase-type Plasminogen Activator), as well as those with low expression of IGFBP2 (insulin-like growth factor binding protein 2), were particularly sensitive to dasatinib.
  • Ovarian cancer cell lines with high expression of HER-2 (Human Epidermal growth factor Receptor 2), VEGF (Vascular endothelial growth factor) and STAT3 (Signal Transducer and Activator of Transcription 3) were correlated with in vitro resistance to dasatinib.

Based upon the findings above, the researchers concluded that there is a clear biological rationale to support the clinical study of dasatinib, as a single agent or in combination with chemotherapy, in patients with ovarian cancer.

Konecny

Gottfried E. Konecny, M.D., UCLA Assistant Professor of Hematology/Oncology, UCLA Jonsson Comprehensive Cancer Center Researcher & First Author of the Dasatinib Study

Ovarian cancer, which will strike 21,600 women this year and kill 15,500, causes more deaths than any other cancer of the female reproductive system. Few effective therapies for ovarian cancer exist, so it would be advantageous for patients if a new drug could be found that fights the cancer, said Gottfried E. Konecny, M.D., a UCLA assistant professor of hematology/oncology, a Jonsson Comprehensive Cancer Center researcher, and first author of the study.

“I think Sprycel® could be a potential additional drug for treating patients with Src dependent ovarian cancer,” Konecny said. “It is important to remember that this work is only on cancer cell lines, but it is significant enough that it should be used to justify clinical trials to confirm that women with this type of ovarian cancer could benefit.”

Recent gene expression studies have shown that approximately one-third of women have ovarian cancers with activated Src pathways, so the drug could potentially help 7,000 ovarian cancer patients every year. Notably, a gene expression study published in 2007 reported Src activation in approximately 50% of the ovarian cancer tumors examined.

In the dasatinib study, the UCLA team tested the drug against 34 ovarian cancer cell lines and conducted genetic analysis of those lines. Through these actions, the researchers were able to identify genes that predict response to dasatinib. If the work is confirmed in human studies, it may be possible to test patients for Src activation and select those who would respond prior to treatment, thereby personalizing their care.

“We were able to identify markers in the pre-clinical setting that would allow us to predict response to Sprycel®,” Konecny said. “These may help us in future clinical trials in selecting patients for studies of the drug.”

Dasatinib is referred to as a “dirty” kinase inhibitor, meaning it inhibits more than one cellular pathway. Konecny said it also inhibits the focal adhesion kinase (FAK) and ephrin receptor, also associated with ovarian cancer, in addition to the Src cellular pathway.

The next step, Konecny said, would be to test the drug on women with ovarian cancer in a clinical trial. The tissue of responders would then be analyzed to determine if the Src and other pathways were activated. If that is confirmed, it would further prove that dasatinib could be used to fight ovarian cancer. In studies, women would be screened before entering a trial and only those with Src dependent cancers could be enrolled to provide further evidence, Konecny said, much like the studies of the molecularly targeted breast cancer drug Herceptin® enrolled only women who had HER-2 positive disease.

“Herceptin® is different because we knew in advance that it only worked in women with HER-2 [gene] amplification,” he said. “In this case, we don’t clearly know that yet. The data reassures us that the drug works where the targets are over-expressed but we need more testing to confirm this.”

The tests combining the drug with chemotherapy are significant because chemotherapy, namely carboplatin and paclitaxel, is considered the standard first line treatment for ovarian cancer patients following surgery. Because dasatinib proved to have a synergistic effect when combined with chemotherapy, it may be possible to add this targeted therapy as a first line treatment if its efficacy is confirmed in future studies.

Dasatinib Study Significance

The dasatinib study is potentially significant to the area of ovarian cancer treatment for several reasons.

First, although this study only tested dasatinib in vitro against ovarian cancer cell lines, the drug is already FDA-approved.  Accordingly, the general safety of the drug has already been established by the FDA.

Second, 71% of the ovarian cancer lines were highly sensitive to dasatinib.

Third, dasatinib was additive to, or synergistic with, the standard of care chemotherapy drugs used in first line ovarian cancer treatment, i.e., carboplatin and paclitaxel.

Fourth, the study established molecular markers that may be predictive of dasatinib effectiveness in particular patients.  In theory, a patient’s tumor biopsy could be tested for the presence of those molecular markers to determine whether a patient will benefit from dasatinib.

Fifth, one of the dasatinib study authors is Dennis J. Slamon, M.D. Ph.D. Dr. Slamon is the director of Clinical/Translational Research, and director of the Revlon/UCLA Women’s Cancer Research Program, at the UCLA Jonsson Comprehensive Cancer Center. Dr. Slamon is also the co-discoverer of Herceptin®, a targeted therapy that revolutionized the treatment of HER-2 positive breast cancer.  Herceptin® is a targeted therapy that kills HER-2 positive breast cancer cells while leaving normal cells unaffected.  The potential use of dasatinib to treat select ovarian cancer patients who test “positive” for specific molecular markers (e.g., Src cellular pathway activation) is similar to the extremely successful drug development approach used for Herceptin®.

Open Clinical Trials Testing Dasatinib (Sprycel®) Against Ovarian Cancer & Solid Tumors

As of this writing, there are several open (i.e., recruiting) clinical trials that involve testing dasatinib against ovarian cancer and solid tumors.

For a list of open clinical trials that involve testing dasatinib against ovarian cancer, CLICK HERE.

For a list of open clinical trials that involve testing dasatinib against solid tumors, CLICK HERE.

All potential volunteers must satisfy the clinical trial entrance criteria prior to enrollment.  Depending on the drug combination being tested, one or more of the solid tumor clinical trials may not be appropriate for an ovarian cancer patient.

About the UCLA Jonsson Comprehensive Cancer Center

UCLA’s Jonsson Comprehensive Cancer Center (JCCC) has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation’s largest comprehensive cancer centers, JCCC is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2009, JCCC was named among the top 12 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 consecutive years. For more information on JCCC, visit the website at http://www.cancer.ucla.edu.

Sources:

FDA Clears Vermillion’s “OVA1” Test To Determine Likelihood of Ovarian Cancer In Women With Pelvic Mass

The U.S. Food and Drug Administration cleared a test that can help detect ovarian cancer in a pelvic mass that is already known to require surgery. The test, called OVA1, helps patients and health care professionals decide what type of surgery should be done and by whom.

First Lab Test That Can Indicate Ovarian Cancer Prior To Biopsy Or Exploratory Surgery

U.S. Food & Drug Administration

The U.S. Food and Drug Administration (FDA) cleared the OVA1™ Test, the first blood test that, prior to surgery, can help physicians determine if a woman is at risk for a malignant pelvic mass. OVA1 is the first FDA-cleared laboratory test that can indicate the likelihood of ovarian cancer with high sensitivity prior to biopsy or exploratory surgery, even if radiological test results fail to indicate malignancy.

The U.S. Food and Drug Administration (FDA) cleared the OVA1™ Test [formerly, the Ovarian Tumor Triage Test], the first blood test that, prior to surgery, can help physicians determine if a woman is at risk for a malignant pelvic mass. OVA1 is the first FDA-cleared laboratory test that can indicate the likelihood of ovarian cancer with high sensitivity prior to biopsy or exploratory surgery, even if radiological test results fail to indicate malignancy. The test was developed by Vermillion, Inc. (formerly, Ciphergen Biosystems, Inc. ), a molecular diagnostics company, in cooperation with Quest Diagnostics, the world’s leading provider of cancer diagnostics. Quest Diagnostics, which is a long-time investor in research and development of the OVA1 technology, has exclusive rights to offer the test to the clinical reference laboratory market in the U.S. for three years.

“When combined with other clinical information, the OVA1 biomarker panel can help assess the likelihood of malignancy of an ovarian tumor before surgery and facilitate decisions about referral to a gynecologic oncologist,” said Frederick R. Ueland, M.D., principal investigator of the prospective, multi-center OVA1 clinical trial. Dr. Ueland is an associate professor gynecologic oncology at the University of Kentucky‘s Markey Cancer Center.

The OVA1 Test is an in vitro diagnostic multivariate index [assay] (IVDMIA) test that combines the results of five immunoassays using a proprietary unique algorithm to produce a single numerical score indicating a women’s likelihood of malignancy. The OVA1 Test provides a new option in the pre-operative evaluation to help physicians assess if a pelvic mass is benign or malignant in order to help determine whether to refer a woman to a gynecologic oncologist for surgery. Numerous clinical practice guidelines recommend that women with ovarian cancer be under the care of a gynecologic oncologist. However, only an estimated one third of women who undergo surgery for possible ovarian cancer are referred to these specialist surgeons for their surgery.(1)

Vermillion received the Society for Gynecologic Oncologists (SGO) Basic Science Poster Award for an abstract on the performance of its OVA1 Test presented at SGO’s 38th Annual Meeting on Women’s Cancer in 2007. In reviewing the test application, the FDA evaluated results of a prospective, double-blind clinical trial which included 27 demographically mixed sites representative of institutions where ovarian tumor subjects may undergo a gynecological examination.

“Surgery in the hands of a gynecologic oncologist is usually associated with more favorable patient outcomes,” said Jon R. Cohen, M.D., chief medical officer and senior vice president, Quest Diagnostics. “Physicians often do not know if a woman’s pelvic mass is malignant or benign until she undergoes surgery. The OVA1 Test is the first FDA-cleared blood test to help clinicians determine whether to refer a woman to a gynecologic oncologist or have a gynecologic oncologist present at the time of surgery. We believe this test will help drive more favorable patient outcomes.”

“Unfortunately, advances in ovarian cancer diagnosis and treatment are few and far between. It is fitting that September, Ovarian Cancer Awareness Month, marks FDA’s clearance of OVA1, a test that represents an important step forward toward improved outcomes,” said Gail S. Page, executive chairperson of the board of directors of Vermillion. “Quest Diagnostics had the foresight to recognize the potential value of this novel multivariate assay and supported its development. We look forward to collaborating to bring this new diagnostic option to the many women who will benefit from specialist care.”

Ueland

"When combined with other clinical information, the OVA1 biomarker panel can help assess the likelihood of malignancy of an ovarian tumor before surgery and facilitate decisions about referral to a gynecologic oncologist," said Frederick R. Ueland, M.D., principal investigator of the prospective, multi-center OVA1 clinical trial. Dr. Ueland is an associate professor gynecologic oncology at the University of Kentucky's Markey Cancer Center.

The FDA clearance of OVA1 makes Quest Diagnostics the only diagnostic testing company to offer FDA cleared tests for ovarian cancer in the pre- and post-surgical settings. In addition to offering the OVA1 Test, Quest Diagnostics was the first laboratory company to provide a new lab test that the FDA cleared in the third quarter of 2008 as an aid for monitoring for recurrence of epithelial ovarian cancer.

The OVA1 Test will be available for physician use in the fourth quarter of this year.

Ovarian cancer is the leading cause of death from gynecologic cancers in the United States and the fifth-leading cause of cancer deaths in women.(2) Approximately 21,600 new cases of ovarian cancer will be diagnosed in the U.S. in 2009, and approximately 14,600 women will die of the disease.(3)

About the OVA1 Test

The OVA1 Test is a qualitative serum test that combines the results of five immunoassays into a single numerical score. It is indicated for women who meet the following criteria: over age 18, ovarian adnexal mass present for which surgery is planned, and not yet referred to an oncologist. The test utilizes five well-established biomarkers — Transthyretin (TT or prealbumin), Apolipoprotein A-1 (Apo A-1), Beta2-Microglobulin (Beta2M), Transferrin (Tfr) and Cancer Antigen 125 (CA 125 II) — and a proprietary algorithm to determine the likelihood of malignancy in women with pelvic mass for whom surgery is planned.

The OVA1 Test is an aid to further assess the likelihood that malignancy is present when the physician’s independent clinical and radiological evaluation does not indicate malignancy. The test should not be used without an independent clinical/radiological evaluation and is not intended to be a screening test or to determine whether a patient should proceed to surgery. Incorrect use of the OVA1 Test carries the risk of unnecessary testing, surgery, and/or delayed diagnosis.

About Vermillion

Vermillion, Inc. is dedicated to the discovery, development and commercialization of novel high-value diagnostic tests that help physicians diagnose, treat and improve outcomes for patients. Vermillion, along with its prestigious scientific collaborators, has diagnostic programs in oncology, hematology, cardiology and women’s health. Vermillion is based in Fremont, California. Additional information about Vermillion can be found on the Web at www.vermillion.com.

About Quest Diagnostics

Quest Diagnostics is the world’s leading provider of diagnostic testing, information and services that patients and doctors need to make better healthcare decisions. The company offers the broadest access to diagnostic testing services through its network of laboratories and patient service centers, and provides interpretive consultation through its extensive medical and scientific staff. Quest Diagnostics is a pioneer in developing innovative diagnostic tests and advanced healthcare information technology solutions that help improve patient care. Additional company information is available at www.QuestDiagnostics.com.

(1) Journal of the National Cancer Institute, Vol. 98, No. 3, February 1, 2006

(2) Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50(1):7-33

(3) 2009 American Cancer Society [Leading Sites of New Cancer Cases and Deaths—2009 Estimates]

Contacts:
Quest Diagnostics:
Media: Wendy Bost 973-520-2800
Investors: Kathleen Valentine 973-520-2900

Vermillion:
Jill Totenberg, he Totenberg Group Tel: 212 994 7363
jtotenberg@totenberggroup.com

Select FDA Comments:

The U.S. Food and Drug Administration today cleared a test that can help detect ovarian cancer in a pelvic mass that is already known to require surgery. The test, called OVA1, helps patients and health care professionals decide what type of surgery should be done and by whom.

OVA1 identifies some women who will benefit from referral to a gynecological oncologist for their surgery, despite negative results from other clinical and radiographic tests for ovarian cancer. If other test results suggest cancer, referral to an oncologist is appropriate even with a negative OVA1 result.

OVA1 should be used by primary care physicians or gynecologists as an adjunctive test to complement, not replace, other diagnostic and clinical procedures.

OVA1 uses a blood sample to test for levels of five proteins that change due to ovarian cancer. The test combines the five separate results into a single numerical score between 0 and 10 to indicate the likelihood that the pelvic mass is benign or malignant.

OVA1 is intended only for women, 18 years and older, who are already selected for surgery because of their pelvic mass. It is not intended for ovarian cancer screening or for a definitive diagnosis of ovarian cancer. Interpreting the test result requires knowledge of whether the woman is pre- or post-menopausal.

Sources: