SU2C Announces the Formation of a New Translational Research Ovarian Cancer “Dream Team”

Ovarian Cancer Community Joins Forces to Fight Deadliest Gynecologic Cancer. The New Stand Up To Cancer Dream Team Will Launch in 2015.

The Ovarian Cancer Research Fund, The Ovarian Cancer National Alliance, and the National Ovarian Cancer Coalition Team Up to Fund New Translational Research Ovarian Cancer “Dream Team.”

 

standuptocancerbanner

A groundbreaking collaboration is underway among three national ovarian cancer organizations: Ovarian Cancer Research Fund (OCRF), Ovarian Cancer National Alliance (OCNA), and National Ovarian Cancer Coalition (NOCC). In partnership with Stand Up To Cancer (SU2C), this group will fund a new Ovarian Cancer Dream Team dedicated to piloting leading-edge, ovarian cancer research that will help patients and save lives.

This partnership was announced tonight by actor Pierce Brosnan on the Stand Up To Cancer’s biennial telecast, and in recognition of National Ovarian Cancer Awareness Month. The SU2C-OCRF-OCNA-NOCC Translational Research Dream Team grant will provide funding, over a three-year period, for research associated with this insidious disease.

Ovarian cancer is the deadliest of all the gynecologic cancers. Almost 22,000 American women will be diagnosed with ovarian cancer in 2014, and more than 14,000 women will lose their lives to the disease. By collaborating to fund an Ovarian Cancer Dream Team, OCRF, OCNA and NOCC, with SU2C, will further research in the field that can lead to new treatments and improved patient outcomes.

Later this month, SU2C, through its science partner the American Association for Cancer Research (AACR), will issue a “Call for Ideas” from researchers and scientists worldwide. The selected Dream Team will be announced next spring, with research beginning in July 2015.

OCRF“Ovarian Cancer Research Fund has been the leading nonprofit funder of ovarian cancer research for years, and this new collaboration is a wonderful way to mark our 20th anniversary,” said Audra Moran, CEO of Ovarian Cancer Research Fund. “We are excited that the Dream Team grant will continue our long tradition of supporting the most innovative research in the field, while providing scientists with a vital new source of financial support.”

OCNA1Calaneet Balas, CEO of the Ovarian Cancer National Alliance, said: “I am so thrilled that our three organizations are coming together to fight the disease we all care so much about. I believe the Ovarian Cancer Dream Team will be paradigm-shifting for our community, and I cannot wait to see what comes from this new initiative. We’re proud of the work the Alliance has done to secure federal research funding on behalf of all women, but the Dream Team gives us new opportunities for collaboration and innovation.”

NOCC - Logo“We are both proud and excited to join in supporting the Ovarian Cancer Dream Team, the first-ever collaboration of such efforts,” said David Barley, CEO of the National Ovarian Cancer Coalition. “We are looking forward to being instrumental in furthering ovarian cancer research. The impacts on families and communities continue to make ovarian cancer “More Than a Woman’s Disease®.” By working together we hope to make a difference in the lives of everyone we touch.”

About the Ovarian Cancer Research Fund
The Ovarian Cancer Research Fund (OCRF), founded in 1994, is the oldest and largest charity in the United States funding ovarian cancer research, and ranks third in overall ovarian cancer research funding only after the National Cancer Institute (NCI) and the U.S. Department of Defense (DOD). Its mission is to fund scientific research that leads to more effective identification, treatment, and ultimately a cure for ovarian cancer, as well as related educational and support initiatives. OCRF has invested nearly $60 million in ovarian cancer research through 217 grants to scientists at 65 leading medical centers in the United States. OCRF continues to take the lead in funding the best and most promising ovarian cancer research while supporting women and their loved ones affected by this terrible disease in our quest to end it. For more information, please visit www.ocrf.org.

About the Ovarian Cancer National Alliance
The Ovarian Cancer National Alliance is a powerful voice for everyone touched by ovarian cancer. We connect survivors, women at risk, caregivers, and health providers with the information and resources they need. We ensure that ovarian cancer is a priority for lawmakers and agencies in Washington, DC, and throughout the country. We help our community raise their voices on behalf of every life that has been affected by this disease. For more information, please visit: www.ovariancancer.org

About the National Ovarian Cancer Coalition
Since its inception in 1995, the National Ovarian Cancer Coalition (NOCC) has been committed to raising awareness, promoting education, and funding research in support of women, families, and communities touched by ovarian cancer. NOCC is well-established as an important national advocate for patients and families struggling with ovarian cancer. NOCC remains steadfast in its mission to save lives by fighting tirelessly to prevent and cure ovarian cancer, and to improve the quality of life for survivors. For more information, please visit: www.ovarian.org.

About Stand Up To Cancer
Stand Up To Cancer (SU2C) raises funds to accelerate the pace of research to get new therapies to patients quickly and save lives now. SU2C, a program of the Entertainment Industry Foundation (EIF) and a 501(c)(3) charitable organization, was established in 2008 by film and media leaders who utilize the industry’s resources to engage the public in supporting a new, collaborative model of cancer research, and to increase awareness about cancer prevention as well as progress being made in the fight against the disease. For more information, please visit: www.standup2cancer.org

Glutamine Ratio is Key Ovarian Cancer Indicator

Glutamine plays an important role in cellular growth in several cancers. A Rice University-led study shows how ovarian cancer metabolism changes between early and late stages. In this study, a further link between glutamine dependency and tumor invasiveness is established in ovarian cancer.

A Rice University-led analysis of the metabolic profiles of hundreds of ovarian tumors has revealed a new test to determine whether ovarian cancer cells have the potential to metastasize, or spread to other parts of the body. The study also suggests how ovarian cancer treatments can be tailored based on the metabolic profile of a particular tumor.

The research, which appears online this week in Molecular Systems Biology, was conducted at the Texas Medical Center in Houston by researchers from Rice University, the University of Texas M.D. Anderson Cancer Center, and the Baylor College of Medicine.

Deepak Nagrath

Deepak Nagrath, Assistant Professor of Chemical and Biomolecular Engineering at Rice University

“We found a striking difference between the metabolic profiles of poorly aggressive and highly aggressive ovarian tumor cells, particularly with respect to their production and use of the amino acid glutamine,” said lead researcher Deepak Nagrath Ph.D. of Rice University. “For example, we found that highly aggressive ovarian cancer cells are glutamine-dependent, and in our laboratory studies, we showed that depriving such cells of external sources of glutamine — as some experimental drugs do — was an effective way to kill late-stage cells.

“The story for poorly aggressive cells was quite different,” said Nagrath, Assistant Professor of Chemical and Biomolecular Engineering at Rice. “These cells use an internal metabolic pathway to produce a significant portion of the glutamine that they consume, so a different type of treatment — one aimed toward internal glutamine sources — will be needed to target cells of this type.”

The research is part of a growing effort among cancer researchers worldwide to create treatments that target the altered metabolism of cancer cells. It has long been known that cancer cells adjust their metabolism in subtle ways that allow them to proliferate faster and survive better. In 1924, Otto Warburg showed that cancer cells produced far more energy from glycolysis than did normal cells. The Nobel Prize-winning discovery became known as the “Warburg effect,” and researchers long believed that all cancers behaved in this way. Intense research in recent decades has revealed a more nuanced picture.

“Each type of cancer appears to have its own metabolic signature,” Nagrath said. “For instance, kidney cancer does not rely on glutamine, and though breast cancer gets some of its energy from glutamine, it gets even more from glycolysis. For other cancers, including glioblastoma and pancreatic cancer, glutamine appears to be the primary energy source.”

Rice University Researchers

Researchers at Rice University’s Laboratory for Systems Biology of Human Diseases analyzed the metabolic profiles of hundreds of ovarian tumors and discovered a new test to determine whether ovarian cancer cells have the potential to metastasize. Study co-authors include, from left, Julia Win, Stephen Wahlig, Deepak Nagrath, Hongyun Zhao, Lifeng Yang and Abhinav Achreja.

Nagrath, director of Rice University’s Laboratory for Systems Biology of Human Diseases, said the new metabolic analysis indicates that ovarian cancer may be susceptible to multidrug cocktails, particularly if the amounts of the drugs can be tailored to match the metabolic profile of a patient’s tumor.

The research also revealed a specific biochemical test that pathologists could use to guide such treatments. The test involves measuring the ratio between the amount of glutamine that a cell takes up from outside and the amount of glutamine it makes internally.

“This ratio proved to be a robust marker for prognosis,” said University of Texas M.D. Anderson Cancer Center co-author Anil Sood, M.D., Professor of Gynecologic Oncology and Reproductive Medicine and co-director of the Center for RNA Interference and Non-Coding RNA. “A high ratio was directly correlated to tumor aggression and metastatic capability. Patients with this profile had the worst prognosis for survival.”

The three-year study included cell culture studies at Rice as well as a detailed analysis of gene-expression profiles of more than 500 patients from the Cancer Genome Atlas and protein-expression profiles from about 200 M.D. Anderson patients.

“The enzyme glutaminase is key to glutamine uptake from outside the cell, and glutaminase is the primary target that everybody is thinking about right now in developing drugs,” Nagrath said. “We found that targeting only glutaminase will miss the less aggressive ovarian cancer cells because they are at a metabolic stage where they are not yet glutamine-dependent.”

Lifeng

Lifeng Yang, Study Lead Author & Graduate Student, Systems Biology of Human Diseases, Rice University

Rice University graduate student Lifeng Yang, lead author of the study, designed a preclinical experiment to test the feasibility of a multidrug approach, involving the use of a JAK inhibitor and a glutaminase inhibitor. This “drug cocktail” approach inhibited the early stage production of internal glutamine, while also limiting the uptake of external glutamine.

“That depleted all sources of glutamine for the cells, and we found that cell proliferation decreased significantly,” Yang said.

Nagrath said the study also revealed another key finding — a direct relationship between glutamine and an ovarian cancer biomarker called “STAT3” (Signal Transducer And Activator Of Transcription 3).

“A systems-level understanding of the interactions between metabolism and signaling is vital to developing novel strategies to tackle cancer,” said M.D. Anderson co-author Prahlad Ram Ph.D., Associate Professor of Systems Biology and co-director of the M.D. Anderson Cancer Center’s Systems Biology Program. “STAT3 is the primary marker that is used today to ascertain malignancy, tumor aggression and metastasis in ovarian cancer.”

Nagrath said, “The higher STAT3 is, the more aggressive the cancer. For the first time, we were able to show how glutamine regulates STAT3 expression through a well-known metabolic pathway called the TCA cycle, which is also known as the ‘Krebs cycle.’”

Nagrath said the research is ongoing. Ultimately, Dr. Nagrath hopes the investigations will lead to new treatment regimens for cancer as well as a better understanding of the role of cancer-cell metabolism in metastasis and drug resistance.

Co-authors include Hongyun Zhao, Stephen Wahlig, Abhinav Achreja and Julia Win (all affiliated with Rice University); Tyler Moss, Lingegowda Mangala, Guillermo Armaiz-Pena, Dahai Jiang, Rajesha Roopaimoole, Cristian Rodriguez-Aguayo, Imelda Mercado-Uribe, Gabriel Lopez-Berestein and Jinsong Liu (all affiliated with M.D. Anderson Cancer Center); Juan Marini of Baylor College of Medicine; and Takashi Tsukamoto of Johns Hopkins University.

The research was supported by seed funding from (i) the Collaborative Advances in Biomedical Computing Program at Rice Univesity’s Ken Kennedy Institute for Information Technology, (ii) Rice University’s John and Ann Doerr Fund for Computational Biomedicine, (iii) the Odyssey Fellowship Program at the MD Anderson Cancer Center, (iv) the estate of C.G. Johnson Jr., (v) the National Institutes of Health, (vi) the Cancer Prevention and Research Institute of Texas, (v) the Ovarian Cancer Research Fund, (vi) the Blanton-Davis Ovarian Cancer Research Program, (vii) the Gilder Foundation, and (viii) the MD Anderson Cancer Center.

Sources: 

Ovarian Cancer Cells Are More Aggressive On Soft Tissues

When ovarian cancer spreads from the ovaries it almost always does so to a layer of fatty tissue that lines the gut. A new study has found that ovarian cancer cells are more aggressive on these soft tissues due to the mechanical properties of this environment. The finding is contrary to what is seen with other malignant cancer cells that seem to prefer stiffer tissues.

Model Release-YES

Professor Michelle Dawson and graduate student Daniel McGrail used traction force microscopy to measure the forces exerted by cancer cells on soft and stiff surfaces. (Photo Credit: Rob Felt, Georgia Institute of Technology)

“What we found is that there are some cancer cells that respond to softness as opposed to stiffness,” said Michelle Dawson, an assistant professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. “Ovarian cancer cells that are highly metastatic respond to soft environments by becoming more aggressive.”

Ovarian cancer cells spread, or metastasize, by a different method than other cancer cells. Breast cancer cells, for example, break off from a solid tumor and flow through the blood until they arrest in small blood vessels. The cancer cells then penetrate the vessel surface to form a tumor. Because ovarian tumors are in the abdomen, these cancer cells are shed into the surrounding fluid and not distributed through the blood. They must be able to adhere directly to the fatty tissue that lines the gut, called the omentum, to begin forming a tumor. The new study discovered details about how ovarian cancer cells seem to prefer the mechanical properties of this soft tissue.

The study was published in a recent advance online edition of the Journal of Cell Science and was sponsored by the National Science Foundation and the Georgia Tech and Emory Center for Regenerative Medicine.

The research team, led by Daniel McGrail, a graduate student in the Dawson lab, found that ovarian cancer cells in vitro were more adherent to a layer of soft fat cells than a layer of stiffer bone cells, and that this behavior was also repeated using gels of similar rigidities.

“All the behaviors that we associate with breast cancer cells on these more rigid environments are flipped for ovarian cancer cells,” Dawson said.

After adhering to these soft surfaces, metastatic ovarian cancer cells became more aggressive. Their proliferation increased and they were less responsive to chemotherapeutics. The ovarian cancer cells were also more motile on soft surfaces, moving nearly twice as fast as on rigid surfaces.

The team also found that less aggressive cells that do not metastasize do not exhibit any of these changes.

The researchers used techniques that haven’t been traditionally used in the study of ovarian cancer. They measured the force exerted by the cells by tracking the displacement of beads in the environment around the cells. The researchers found that the metastatic cells increased their traction forces – used to generate motion – by three-fold on soft surfaces, but no such change was present in the less aggressive cells.

“We think the behavior that metastatic ovarian cancer cells exert on these soft surfaces is representative of the mechanical tropism that they have for these softer tissues in the gut,” Dawson said.

In future work, the researchers will investigate whether ovarian cancer cells have some natural inclination towards this uniquely more aggressive behavior in softer environments.

“We’re trying to find out whether there is some internal programming that leads to this aggressive behavior,” Dawson said.

This research is supported by the National Science Foundation under award number 1032527, and the Georgia Tech and Emory Center for Regenerative Medicine under award number 1411304. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

Source:  McGrail DJ, et al., The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho-ROCK pathway. (Journal of Cell Science, 2014). http://dx.doi.org/10.1242/?jcs.144378.

TGen-led Study Discovers Genetic Cause of a Rare Type of Ovarian Cancer

TGen-led study discovers genetic cause of a rare type of ovarian cancer. Scientific breakthrough could lead to new cancer treatments; study inspired by the memory of Taryn Ritchey, a 22-year-old patient who lost her battle to the disease.

The cause of a rare type of ovarian cancer that most often strikes girls and young women has been uncovered by an international research team led by the Translational Genomics Research Institute (TGen), according to a study published online recently by the renowned scientific journal, Nature Genetics. [1] In a scientific rarity, two additional studies with similar results were also published online on the same day in Nature Genetics, producing immediate validation and reflecting a scientific consensus that usually takes months or even years to accomplish. [2-3]

By applying its groundbreaking work in genomics, TGen led a study that included: Scottsdale Healthcare, Mayo Clinic, Johns Hopkins University, St. Joseph’s Hospital and Medical Center; Evergreen Hematology and Oncology, Children’s Hospital of Alabama, the Autonomous University of Barcelona, British Columbia Cancer Agency, University of British Columbia, and the University Health Network-Toronto.

The findings revealed a “genetic superhighway” mutation in a gene found in the overwhelming majority of patients with small cell carcinoma of the ovary, hypercalcemic type, also known as “SCCOHT.” This rare type of ovarian cancer is usually not diagnosed until it is in its advanced stages. It does not respond to standard chemotherapy, and 65 percent of patients with the disease die within 2 years. SCCOHT can affect girls as young as 14 months, and women as old as 58 years – with a mean age of only 24 years old. In this study, the youngest patient was 9 years old.

The three separate groups of international researchers reported strikingly similar scientific findings related to SCCOHT, as provided below.

  • Identification of germline (i.e., inherited) and somatic (lifetime acquired) inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 75% (9/12) of SCCOHT cases, in addition to SMARCA4 protein loss in 82% (14/17) of the SCCOHT tumors. Notably, only 0.4% (2/485) of the other primary ovarian tumors tested possessed similar genomic characteristics. [Ref. 1]
  • Identification of recurrent inactivating mutations in the SMARCA4 gene in 12 of 12 SCCOHT tumor samples. [Ref. 2]
  • Indentification of germline inactivating mutations in familial cases of SCCOHT. Through additional analysis of non-familial tumors, the researchers determined that nearly 100% of tumors carry SMARCA4 mutations, and 38 of 40 lack protein expression.[Ref. 3]

Collectively, these findings implicate inactivating mutations in the SMARCA4 gene as a major cause of SCCOHT, and may lead researchers to improvements in genetic counseling, as well as the development of new targeted therapy treatment approaches.

Dr. Jeffrey Trent, President and Research Director of TGen, is the study's senior author.

Dr. Jeffrey Trent, President and Research Director of TGen, is the study’s senior author.

“This is a thoroughly remarkable study. Many genetic anomalies can be like a one-lane road to cancer; difficult to negotiate. But these findings indicate a genetic superhighway that leads right to this highly aggressive disease,” said Dr. Jeffrey Trent, President and Research Director of TGen, and the study’s senior author. “The correlation between mutations in SMARCA4 and the development of SCCOHT is simply unmistakable.”

Dr. Trent added that while the breakthrough is for a relatively rare cancer, discovering the origins of this type of ovarian cancer could have implications for more common diseases.

Much of the work in this study was inspired by the memory of Taryn Ritchey, a 22-year-old TGen patient who in 2007 lost her battle with ovarian cancer, the 5th leading cause of cancer death among American women.

“Taryn would be incredibly excited about this amazing new study, and she would be glad and thankful that other young women like her might now be helped because of TGen’s ongoing research,” said Taryn’s mother Judy Jost of Cave Creek, Arizona. “My daughter never gave up, and neither has TGen.”

The SMARCA4 gene – previously associated with lung, brain and pancreatic cancer – was the only recurrently mutated gene in the study’s samples. The implications of this discovery, therefore, may be widespread.

“The findings in this study represent a landmark in the field. The work identifies SMARCA4 mutations as the culprit, and most future research on this disease will be based on this remarkable discovery,” said Dr. Bert Vogelstein, Director of the Ludwig Center at Johns Hopkins University, Investigator at the Howard Hughes Medical Institute, and pioneer in the field of cancer genomics. He did not participate in the study but is familiar with its findings.

“The past decade of research has taught us that cancer is a vastly complex disease. Profound patient-to-patient variability has made treatment and diagnosis for many tumor types at times very difficult. In this case, however, we have found a single genetic event driving SCCOHT in nearly every patient,” said Dr. William Hendricks, a TGen Staff Scientist and another author of the study.

“We have shown that loss of SMARCA4 protein expression is extremely specific to SCCOHT and can facilitate the diagnosis of SCCOHT,” said Dr. Anthony N. Karnezis, a fellow at the British Columbia Cancer Agency located in Vancouver, Canada, and one of the study’s authors.

Pilar Ramos, a TGen Research Associate, is the study's lead author.

Pilar Ramos, a TGen Research Associate, is the study’s lead author. “By definitively identifying the relationship between SMARCA4 and SCCOHT, we have high confidence that we have set the stage for clinical trials that could provide patients with immediate benefit.”

“By definitively identifying the relationship between SMARCA4 and SCCOHT, we have high confidence that we have set the stage for clinical trials that could provide patients with immediate benefit.”

“We set out to uncover any small sliver of hope for women afflicted with this rare cancer. What we found instead are the nearly universal underpinnings of SCCOHT,” said Pilar Ramos, a TGen Research Associate, and the study’s lead author. “By definitively identifying the relationship between SMARCA4 and SCCOHT, we have high confidence that we have set the stage for clinical trials that could provide patients with immediate benefit.”

The TGen-led study was supported by grants from: the Marsha Rivkin Center for Ovarian Cancer Research, the Anne Rita Monahan Foundation, the Ovarian Cancer Alliance of Arizona, the Small Cell Ovarian Cancer Foundation, and philanthropic support to the TGen Foundation. Further support was provided by the Terry Fox Research Initiative’s New Frontiers Program in Cancer, and the Canadian Institutes of Health Research.

For more information about TGen’s research into small cell carcinoma of the ovary (SCCO), or to participate in a future study, visit: www.tgen.org/scco.

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting cutting-edge genomic research to accelerate breakthroughs in healthcare. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

References:

1./ Ramos P, et al.  Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nature Genetics (published online 23 March 2014) doi:10.1038/ng.2928.

2./ Jelinic P, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovaryNature Genetics (published online 23 March 2014) doi:10.1038/ng.2922.

3./ Witkowski L, et al.  Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type.  Nature Genetics (published online 23 March 2014) doi:10.1038/ng.2931

Additional Information:

 

Libby’s H*O*P*E* & Women’s Oncology Research & Dialogue Launch New “WORD of HOPE™” Ovarian Cancer Educational Podcast Series

WORD OF HOPE™ Ovarian Cancer Podcast Now Available Through New Website, iTunes, YouTube, and Other Online Sources.

A new ovarian cancer educational podcast series, entitled “WORD of HOPE™,” was launched during Women’s Health Awareness Week through a collaborative initiative of Libby’s H*O*P*E*™ (LH) and Women’s Oncology Research & Dialogue (WORD).

The WORD of HOPE™ Ovarian Cancer podcast series will address important topics related to ovarian cancer, including prevention, early detection, diagnosis, groundbreaking treatments, scientific and clinical research information, and related women’s health information for ovarian cancer patients, caregivers and advocates. The WORD of HOPE™ podcast series can be found online at http://www.wordofhopepodcast.com, and is available to viewers and listeners for subscription at the WORD Of HOPE™ podcast website, iTunes, and YouTube.

“From the beginning, WORD has been committed to taking the most important scientific information and providing patients, caregivers and advocates the easily accessible resources to educate and inspire during their journey of care. As a physician, nearly every day we are looking for resources to give newly diagnosed patients and their supporters to help them better understand their diagnosis and treatment options. We are proud to partner with Libby’s H*O*P*E*™ and its founder Paul Cacciatore in the production of these new podcasts,” said Dr. John Geisler, WORD co-founder and Director of Gynecologic Oncology at University of Toledo.

Paul Cacciatore, Libby’s H*O*P*E* founder and podcast co-host said: “The WORD of HOPE™ ovarian cancer podcast series embodies the age old adage that ‘information is power’ — a potentially life-saving concept in the fight against the most lethal gynecologic cancer.” Mr. Cacciatore emphasized that the information featured in the podcast series is easy to understand and accessible from anywhere, including at home, on the job, or on the go through a smartphone or iPad. “WORD of HOPE™ not only raises much-needed ovarian cancer awareness in the minds of the general public, it educates survivors to proactively participate in their treatment through more meaningful dialogue with their doctors. Libby’s H*O*P*E* is proud to partner with WORD through this global form of social media.”

The first podcast installment will feature the following seven episodes (three already posted; four pending) which address ten significant 2010 scientific research and clinical treatment topics within the field of ovarian cancer:

Viewers or listeners of WORD of HOPE™ Ovarian Cancer Podcast can contact Nathan Manahan, WORD Executive Director, via email to provide feedback and ideas for the podcast. To listen, watch or subscribe to the podcast series, visit http://www.wordofhopepodcast.com.

About the WORD of HOPE™ Podcast

Based in Indianapolis, Indiana (WORD) and Los Angeles, California (LH), WORD of HOPE™ serves viewers and listeners interested in up-to-date ovarian cancer information. Hosted by Nathan Manahan and Paul Cacciatore, WORD of HOPE™ ovarian cancer podcasts will be released several times a month and available for subscription through iTunes, RSS and YouTube.

About Women’s Oncology Research & Dialogue

Co-founded by gynecologic oncologists Drs. Kelly Manahan and John Geisler, WORD is an Indianapolis-based nonprofit organization dedicated to helping women conquer gynecologic cancers through catalyzing innovative scientific and clinical research, which results in empowering educational resources for women’s organizations and medical personnel regarding proper prevention, diagnosis and treatment.

About Libby’s H*O*P*E*™

Paul Cacciatore established Libby’s H*O*P*E*(*Helping *Ovarian Cancer Survivors *Persevere Through *Education)™ in March 2008 as an online resource to assist his 26-year-old cousin, Elizabeth “Libby” Remick, who was battling advanced-stage ovarian cancer. Although Libby ultimately lost her battle to the disease, Paul continues to assist ovarian cancer survivors worldwide, and their families and friends, through the website under the principle that “information is power” in the fight against ovarian cancer. Through Libby’s H*O*P*E*™, Paul has published approximately 250 weblog articles relating to ovarian cancer and cancer-related topics. Libby’s H*O*P*E*™ utilizes a variety of online media resources and social networks to disseminate critical information relating to ovarian cancer awareness, including the early warning signs and symptoms of the disease, important medical discoveries, relevant current clinical trials, and most importantly, stories of hope involving ovarian cancer survivors and their families. To learn more, visit https://healthinfoispower.wordpress.com

For more information, contact Executive Producer, Chad Braham at 317-855-8144 or visit the official website: http://www.wordofhopepodcast.com.

2011 SGO Annual Meeting: Ovarian Cancer Abstracts Selected For Presentation

The March 2011 supplemental issue of Gynecologic Oncology sets forth the ovarian cancer and ovarian cancer-related medical abstracts selected by the Society of Gynecologic Oncologists for presentation at its 42nd Annual Meeting on Women’s Cancer™, which is being held in Orlando, Florida from March 6-9, 2011.

The Society of Gynecologic Oncologists (SGO) is hosting its 42nd Annual Meeting on Women’s Cancer™ (March 6–9, 2011) in Orlando, Florida. The SGO Annual Meeting attracts more than 1,700 gynecologic oncologists and other health professional from around the world.

In connection with this premier gynecologic cancer event, 651 abstracts, and 27 surgical films were submitted for consideration. After careful discussion and deliberation, the SGO selected 51 abstracts for oral presentation (27 Plenary session papers, 24 Focused Plenary papers, and 42 Featured Posters, presented in a new, electronic format), along with 227 for poster presentation. Of the 27 surgical films originally submitted, five films were selected for presentation during a featured Focused Plenary session.

The ovarian cancer abstracts listed below were obtained from the March 2011 supplemental issue of Gynecologic Oncology. Each abstract bears the number that it was assigned in the Gynecologic Oncology journal table of contents.

Please note that we provide below (under the heading “Additional Information”) Adobe Reader PDF copies of the 2011 SGO Annual Meeting program summary and the medical abstract booklet (includes all gynecologic cancer topics). If you require a free copy of the Adobe Reader software, please visit http://get.adobe.com/reader/otherversions/.

For your convenience, we listed the 2011 SGO Annual Meeting ovarian cancer abstracts under the following subject matter headings:  (1) ovarian cancer symptoms, (2) ovarian cancer screening, (3) pathology, (4) ovarian cancer staging, (5) chemotherapy, (6) diagnostic and prognostic biomarkers, (7) clinical trial drugs and results, (8) hereditary breast & ovarian cancer syndrome (BRCA gene deficiencies & Lynch Syndrome), (9) gynecologic practice, (10) gynecologic surgery, (11) genetic/molecular profiling, (12) immunotherapy, (13) medical imaging, (14) preclinical studies – general, (15) preclinical studies – potential therapeutic targets, (16) palliative and supportive care, (17) rare ovarian cancers, (18) survival data, (19) survivorship, (20) other, (21) late breaking abstracts.

Ovarian Cancer Symptoms

142. Utility of symptom index in women at increased risk for ovarian cancer. (SGO Abstract #140)

184. Symptom-triggered screening for ovarian cancer: A pilot study of feasibility and acceptability. (SGO Abstract #182)

187. Women without ovarian cancer reporting disease-specific symptoms. (SGO Abstract #185)

Ovarian Cancer Screening

12. Ovarian cancer: Predictors of primary care physicians’ referral to gynecologic oncologists. (SGO Abstract #10)

84. Long-term survival of patients with epithelial ovarian cancer detected by sonographic screening. (SGO Abstract #82)

90. Significant endometrial pathology detected during a transvaginal ultrasound screening trial for ovarian cancer. (SGO Abstract #88)

109. Detection of the tissue-derived biomarker peroxiredoxin 1 in serum of patients with ovarian cancer: A biomarker feasibility study. (SGO Abstract #107)

113. Epithelial ovarian cancer tumor microenvironment is a favorable biomarker resource. (SGO Abstract #111)

127. Stop and smell the volatile organic compounds: A novel breath-based bioassay for detection of ovarian cancer. (SGO Abstract #125)

144. Incidental gynecologic FDG-PET/CT findings in women with a history of breast cancer. (SGO Abstract #142)

156. Discovery of novel monoclonal antibodies (MC1–MC6) to detect ovarian cancer in serum and differentiate it from benign tumors. (SGO Abstract #154)

158. Evaluation of the risk of ovarian malignancy algorithm (ROMA) in women with a pelvic mass presenting to general gynecologists. (SGO Abstract #156)

162. Human epididymis protein 4 increases specificity for the detection of invasive epithelial ovarian cancer in premenopausal women presenting with an adnexal mass. (SGO Abstract #160)

163. Identification of biomarkers to improve specificity in preoperative assessment of ovarian tumor for risk of cancer. (SGO Abstract #161)

171. OVA1 has high sensitivity in identifying ovarian malignancy compared with preoperative assessment and CA-125. (SGO Abstract #169)

172. OVA1 improves the sensitivity of the ACOG referral guidelines for an ovarian mass. (SGO Abstract #170)

182. Sonographic predictors of ovarian malignancy. (SGO Abstract #180)

237. Management of complex pelvic masses using the OVA1 test: A decision analysis. (SGO Abstract #235)

241. Three-dimensional power doppler angiography as a three-step technique for differential diagnosis of adnexal masses: A prospective study. (SGO Abstract #239)

Pathology

145. Accuracy of frozen-section diagnosis of ovarian borderline tumor. (SGO Abstract #143)

Ovarian Cancer Staging

31. Should stage IIIC ovarian cancer be further stratified by intraperitoneal versus retroperitoneal-only disease? A Gynecologic Oncology Group study. (SGO Abstract #29)

173. Peritoneal staging biopsies in early-stage ovarian cancer: Are they necessary? (SGO Abstract #171)

Chemotherapy

29. Treatment of chemotherapy-induced anemia in patients with ovarian cancer: Does the use of erythropoiesis-stimulating agents worsen survival? (SGO Abstract #27)

69. Intraperitoneal chemotherapy for recurrent ovarian cancer appears efficacious with high completion rates and low complications. (SGO Abstract #67)

174. Predictors of severe and febrile neutropenia during primary chemotherapy for ovarian cancer. (SGO Abstract #172)

177. Sequencing of therapy and outcomes associated with use of neoadjuvant chemotherapy in advanced epithelial ovarian cancer in the Medicare population. (SGO Abstract #175)

179. Should we treat patients with ovarian cancer with positive retroperitoneal lymph nodes with intraperitoneal chemotherapy? Impact of lymph node status in women undergoing intraperitoneal chemotherapy. (SGO Abstract #177)

229. Predictors and effects of reduced relative dose intensity in women receiving their primary course of chemotherapy for ovarian cancer. (SGO Abstract #227)

Diagnostic & Prognostic Biomarkers

128. Stress and the metastatic switch in epithelial ovarian carcinoma. (SGO Abstract #126)

130. The cytoskeletal gateway for tumor aggressiveness in ovarian cancer is driven by class III β-tubulin. (SGO Abstract #128)

134. True blood: Platelets as a biomarker of ovarian cancer recurrence. (SGO Abstract #132)

148. CA-125 changes can predict optimal interval cytoreduction in patients with advanced-stage epithelial ovarian cancer treated with neoadjuvant chemotherapy. (SGO Abstract #146)

149. CA-125 surveillance for women with ovarian, fallopian tube or primary peritoneal cancers: What do survivors think? (SGO Abstract #147)

150. Calretinin as a prognostic indicator in granulosa cell tumor. (SGO Abstract #148)

135. Tumor expression of the type I insulin-like growth factor receptor is an independent prognostic factor in epithelial ovarian cancer. (SGO Abstract #133)

147. C-terminal binding protein 2: A potential marker for response to histone deacetylase inhibitors in epithelial ovarian cancer. (SGO Abstract #145)

157. Elevated serum adiponectin levels correlate with survival in epithelial ovarian cancers. (SGO Abstract #155)

175. Prognostic impact of prechemotherapy HE4 and CA-125 levels in patients with ovarian cancer. (SGO Abstract #175)

178. Serum HE4 level is an independent risk factor of surgical outcome and prognosis of epithelial ovarian cancer. (SGO Abstract #176)

Clinical Trial Drugs & Results

8. MicroRNA as a novel predictor of response to bevacizumab in recurrent serous ovarian cancer: An analysis of The Cancer Genome Atlas. (SGO Abstract #6)

9. Prospective investigation of risk factors for gastrointestinal adverse events in a phase III randomized trial of bevacizumab in first-line therapy of advanced epithelial ovarian cancer, primary peritoneal cancer or fallopian tube cancer: A Gynecologic Oncology Group study. (SGO Abstract #7)

10. First in human trial of the poly(ADP)-ribose polymerase inhibitor MK-4827 in patients with advanced cancer with antitumor activity in BRCA-deficient and sporadic ovarian cancers.  (SGO Abstract #8)

30. An economic analysis of intravenous carboplatin plus dose-dense weekly paclitaxel versus intravenous carboplatin plus every three-weeks paclitaxel in the upfront treatment of ovarian cancer. (SGO Abstract #28)

51. BRCA1-deficient tumors demonstrate enhanced cytotoxicity and T-cell recruitment following doxil treatment. (SGO Abstract #49)

54. A novel combination of a MEK inhibitor and fulvestrant shows synergistic antitumor activity in estrogen receptor-positive ovarian carcinoma. (SGO Abstract #52)

68. An economic analysis of bevacizumab in recurrent treatment of ovarian cancer. (SGO Abstract #66)

71. A phase II study of gemcitabine, carboplatin and bevacizumab for the treatment of platinum-sensitive recurrent ovarian cancer. (SGO Abstract #69)

72. A phase I clinical trial of a novel infectivity-enhanced suicide gene adenovirus with gene transfer imaging capacity in patients with recurrent gynecologic cancer. (SGO Abstract #70)

73. A phase I study of a novel lipopolymer-based interleukin-12 gene therapeutic in combination with chemotherapy for the treatment of platinum-sensitive recurrent ovarian cancer. (SGO Abstract #71)

74. AMG 386 combined with either pegylated liposomal doxorubicin or topotecan in patients with advanced ovarian cancer: Results from a phase Ib study. (SGO Abstract #72)

86. Pressure to respond: Hypertension predicts clinical benefit from bevacizumab in recurrent ovarian cancer. (SGO Abstract #84)

152. Changes in tumor blood flow as estimated by dynamic-contrast MRI may predict activity of single-agent bevacizumab in recurrent epithelial ovarian cancer and primary peritoneal cancer: An exploratory analysis of a Gynecologic Oncology Group phase II trial. (SGO Abstract #150)

153. Comparing overall survival in patients with epithelial ovarian, primary peritoneal or fallopian tube cancer who received chemotherapy alone versus neoadjuvant chemotherapy followed by delayed primary debulking. (SGO Abstract #151)

154. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced ovarian cancer. (SGO Abstract #152)

193. Pegylated liposomal doxorubicin with bevacizumab in the treatment of platinum-resistant ovarian cancer: Toxicity profile results. (SGO Abstract #191)

194. Phase II Trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. (SGO Abstract #192)

195. A phase I/II trial of IDD-6, an autologous dendritic cell vaccine for women with advanced ovarian cancer in remission. (SGO Abstract #193)

183. STAC: A phase II study of carboplatin/paclitaxel/bevacizumab followed by randomization to either bevacizumab alone or erlotinib and bevacizumab in the upfront management of patients with ovarian, fallopian tube or peritoneal cancer. (SGO Abstract #181)

228. Is it more cost-effective to use bevacizumab in the primary treatment setting or at recurrence? An economic analysis. (SGO Abstract #226)

240. The use of bevacizumab and cytotoxic and consolidation chemotherapy for the upfront treatment of advanced ovarian cancer: Practice patterns among medical and gynecologic oncology SGO members. (SGO Abstract #238)

Hereditary Breast & Ovarian Cancer Syndrome (BRCA gene deficiencies & Lynch Syndrome)

39. BRCAness profile of ovarian cancer predicts disease recurrence. (SGO Abstract #37)

52. A history of breast carcinoma predicts worse survival in BRCA1 and BRCA2 mutation carriers with ovarian carcinoma. (SGO Abstract #52)

137. Does genetic counseling for women at high risk of harboring a deleterious BRCA mutation alter risk-reduction strategies and cancer surveillance behaviors? (SGO Abstract #135)

138. Hereditary breast and ovarian cancer syndrome based on family history alone and implications for patients with serous carcinoma. (SGO Abstract #138)

139. Management and clinical outcomes of women with BRCA1/2 mutations found to have occult cancers at the time of risk-reducing salpingo-oophorectomy. (SGO Abstract #137)

141. The impact of BRCA testing on surgical treatment decisions for patients with breast cancer. (SGO Abstract #139)

136. Compliance with recommended genetic counseling for Lynch syndrome: Room for improvement. (SGO Abstract #134)

Gynecologic Practice

81. Availability of gynecologic oncologists for ovarian cancer care. (SGO Abstract #79)

Gynecologic Surgery

19. Single-port paraaortic lymph node dissection. (SGO Abstract #17)

20. Robotic nerve-sparing radical hysterectomy type C1. (SGO Abstract #18)

21. Urinary reconstruction after pelvic exenteration: Modified Indiana pouch. (SGO Abstract #19)

22. Intrathoracic cytoreductive surgery by video-assisted thoracic surgery in advanced ovarian carcinoma. (SGO Abstract #20)

26. Cost comparison of strategies for the management of venous thromboembolic event risk following laparotomy for ovarian cancer. (SGO Abstract #24)

28. Primary debulking surgery versus neoadjuvant chemotherapy in stage IV ovarian cancer. (SGO Abstract #26)

33. Does the bedside assistant matter in robotic surgery: An analysis of patient outcomes in gynecologic oncology. (SGO Abstract #31)

48. Defining the limits of radical cytoreductive surgery for ovarian cancer. (SGO Abstract #46)

87. Prognostic impact of lymphadenectomy in clinically early-stage ovarian malignant germ cell tumor. (SGO Abstract #85)

93. Secondary cytoreductive surgery: A key tool in the management of recurrent ovarian sex cord–stromal tumors. (SGO Abstract #91)

146. Advanced-stage ovarian cancer metastases to sigmoid colon mesenteric lymph nodes: Clinical consideration of tumor spread and biologic behavior. (SGO Abstract #144)

155. Cytoreductive surgery for serous ovarian cancer in patients 75 years and older. (SGO Abstract #153)

168. Intraperitoneal catheters placed at the time of bowel surgery: A review of complications. (SGO Abstract #166)

169. Laparoscopic versus laparotomic surgical staging for early-stage epithelial ovarian cancer. (SGO Abstract #167)

170. Oncologic and reproductive outcomes of cystectomy compared with oophorectomy as treatment for borderline ovarian tumor. (SGO Abstract #168)

180. Significance of perioperative infectious disease in patients with ovarian cancer. (SGO Abstract #178)

185. The feasibility of mediastinal lymphadenectomy in the management of advanced and recurrent ovarian carcinoma. (SGO Abstract #183)

235. Incidence of venous thromboembolism after robotic surgery for gynecologic malignancy: Is dual prophylaxis necessary? (SGO Abstract #233)

286. Charlson’s index: A validation study to predict surgical adverse events in gynecologic oncology. (SGO Abstract #284)

288. Cost-effectiveness of extended postoperative venous thromboembolism prophylaxis in gynecologic pncology patients. (SGO Abstract #286)

302. Integration of and training for robot-assisted surgery in a gynecologic oncology fellowship program. (SGO Abstract #300)

303. Outcomes of patients with gynecologic malignancies undergoing video-assisted thorascopic surgery and pleurodesis for malignant pleural effusion. (SGO Abstract #301)

304. Perioperative and pathologic outcomes following robot-assisted laparoscopic versus abdominal management of ovarian cancer. (SGO Abstract #302)

307. Predictive risk factors for prolonged hospitalizations after gynecologic laparoscopic surgery. (SGO Abstract #305)

309. Robot-assisted surgery for gynecologic cancer: A systematic review. (SGO Abstract #307)

310. Robotic radical hysterectomy: Extent of tumor resection and operative outcomes compared with laparoscopy and exploratory laparotomy. (SGO Abstract #308)

315. Utilization of specialized postoperative services in a comprehensive surgical cytoreduction program. (SGO Abstract #313)

Genetic/Molecular Profiling

5. A 3’ UTR KRAS variant as a biomarker of poor outcome and chemotherapy resistance in ovarian cancer. (SGO Abstract #3)

15. XPC single-nucleotide polymorphisms correlate with prolonged progression-free survival in advanced ovarian cancer. (SGO Abstract #13)

16. Genomewide methylation analyses reveal a prominent role of HINF1 network genes, via hypomethylation, in ovarian clear cell carcinoma. (SGO Abstract #14)

49. Loss of ARID1A is a frequent event in clear cell and endometrioid ovarian cancers. (SGO Abstract #47)

53. Genetic variants in the mammalian target of rapamycin (mTOR) signaling pathway as predictors of clinical response and survival in women with ovarian cancer. (SGO Abstract #51)

55. BAD apoptosis pathway expression and survival from cancer. (SGO Abstract #53)

59. Molecular profiling of advanced pelvic serous carcinoma associated with serous tubal intraepithelial carcinoma. (SGO Abstract #57)

82. Biologic roles of tumor and endothelial delta-like ligand 4 in ovarian cancer. (SGO Abstract #80)

85. MicroRNA 101 inhibits ovarian cancer xenografts by relieving the chromatin-mediated transcriptional repression of p21waf1/cip1. (SGO Abstract #83)

102. Association between global DNA hypomethylation in leukocytes and risk of ovarian cancer. (SGO Abstract #100)

103. Cisplatin, carboplatin, and paclitaxel: Unique and common pathways that underlie ovarian cancer response. (SGO Abstract #101)

106. Comparison of mTOR and HIF pathway alterations in the clear cell carcinoma variant of kidney, ovary and endometrium. (SGO Abstract #104)

107. Concordant gene expression profiles in matched primary and recurrent serous ovarian cancers predict platinum response. (SGO Abstract #105)

111. Differential microRNA expression in cis-platinum-resistant versus -sensitive ovarian cancer cell lines. (SGO Abstract #109)

112. DNA methylation markers associated with serous ovarian cancer subtypes. (SGO Abstract #110)

118. MicroRNA and messenger RNA pathways associated with ovarian cancer cell sensitivity to topotecan, gemcitabine and doxorubicin. (SGO Abstract #116)

119. Molecular profiling of patients with curatively treated advanced serous ovarian carcinoma from The Cancer Genome Atlas. (SGO Abstract #117)

125. Proteomic analysis demonstrates that BRCA1-deficient epithelial ovarian cancer cell lines activate alternative pathways following exposure to cisplatin. (SGO Abstract #123)

132. The tumor suppressor KLF6, lost in a majority of ovarian cancer cases, represses VEGF expression levels. (SGO Abstract #130)

126. Quantitative PCR array identification of microRNA clusters associated with epithelial ovarian cancer chemoresistance. (SGO Abstract #124)

160. Genes functionally regulated by methylation in ovarian cancer are involved in cell proliferation, development and morphogenesis. (SGO Abstract #158)

181. Single-nucleotide polymorphism in DNA repair and drug resistance genes alone or in combination in epithelail ovarian cancer. (SGO Abstract #179)

278. Expression patterns of p53 and p21 cell cycle regulators and clinical outcome in women with pure gynecologic sarcomas. (SGO Abstract #276)

Immunotherapy

98. Ab-IL2 fusion proteins mediate NK cell immune synapse formation in epithelial ovarian cancer by polarizing CD25 to the target cell–effector cell interface. (SGO Abstract #96)

124. Proteasome inhibition increases death receptors and decreases major histocompatibility complex I expression: Pathways to exploit in natural killer cell immunotherapy. (SGO Abstract #122)

Medical Imaging

164. Impact of FDG-PET in suspected recurrent ovarian cancer and optimization of patient selection for cytoreductive surgery. (SGO Abstract #162)

294. The clinical and financial implications of MRI of pelvic masses. (SGO Abstract #292)

Preclinical Studies

11. A unique microRNA locus at 19q13.41 sensitizes epithelial ovarian cancers to chemotherapy. (SGO Abstract #9)

14. Common single-nucleotide polymorphisms in the BNC2, HOXD1 and MERIT40 regions contribute significantly to racial differences in ovarian cancer incidence. (SGO Abstract #12)

46. Development of a preclinical serous ovarian cancer mouse model. (SGO Abstract #44)

56. Examination of matched primary and recurrent ovarian cancer specimens supports the cancer stem cell hypothesis. (SGO Abstract #54)

58. Modeling of early events in serous carcinogenesis: Molecular prerequisites for transformation of fallopian tube epithelial cells. (SGO Abstract #56)

101. Antiproliferative activity of a phenolic extract from a native Chilean Amaranthaceae plant in drug-resistant ovarian cancer cell lines. (SGO Abstract #99)

115. Identification and characterization of CD44+/CD24–ovarian cancer stem cell properties and their correlation with survival. (SGO Abstract #113)

Preclinical Studies – Potential Therapeutic Targets

57. Hypoxia-mediated activation of signal transducer and activator of transcription 3 (STAT3) in ovarian cancer: A novel therapeutic strategy using HO-3867, a STAT3 inhibitor (and novel curcumin analog). (SGO Abstract #55)

61. The ubiquitin ligase EDD mediates platinum resistance and is a target for therapy in epithelial ovarian cancer. (SGO Abstract #59)

97. A novel hedgehog pathway smoothened inhibitor (BMS-833923) demonstrates in vitro synergy with carboplatin in ovarian cancer cells. (SGO Abstract #95)

100. AMPK activation mimics glucose deprivation and induces cytotoxicity in ovarian cancer cells. (SGO Abstract #98)

104. Clinical significance of vascular cell adhesion molecule 1 (VCAM-1) in the ovarian cancer microenvironment. (SGO Abstract #102)

105. Combined erbB/VEGFR blockade has improved anticancer activity over single-pathway inhibition in ovarian cancer in vivo. (SGO Abstract #103)

114. EZH2 expression correlates with increased angiogenesis in ovarian carcinoma. (SGO Abstract #112)

116. Induction of apoptosis in cisplatin-resistant ovarian cancer cells by G-1, a specific agonist of the G-protein-coupled estrogen receptor GPR30. (SGO Abstract #114)

120. Neuropilin-1 blockade in the tumor microenvironment reduces tumor growth. (SGO Abstract #118)

129. Targeting the hedgehog pathway reverses taxane resistance in ovarian cancer. (SGO Abstract #127)

121. Ovarian cancer lymph node metastases express unique cellular structure and adhesion genes. (SGO Abstract #119)

122. Overexpression of fibroblast growth factor 1 and fibroblast growth factor receptor 4 in high-grade serous ovarian carcinoma: Correlation with survival and implications for therapeutic targeting. (SGO Abstract #120)

131. The pattern of H3K56 acetylation expression in ovarian cancer. (SGO Abstract #129)

133. Thinking outside of the tumor: Targeting the ovarian cancer microenvironment. (SGO Abstract #131)

161. Horm-A domain-containing protein 1 (HORMAD1) and outcomes in patients with ovarian cancer. (SGO Abstract #159)

165. Influence of the novel histone deacetylase inhibitor panobinostat (LBH589) on the growth of ovarian cancer. (SGO Abstract #163)

166. Inhibition of stress-induced phosphoprotein 1 decreases proliferation of ovarian cancer cell lines. (SGO Abstract #164)

167. Insulin-like growth factor receptor 1 pathway signature correlates with adverse clinical outcome in ovarian cancer. (SGO Abstract #165)

230. Therapeutic synergy and resensitization of drug-resistant ovarian carcinoma to cisplatin by HO-3867. (SGO Abstract #228)

Palliative & Supportive Care

159. Factors associated with hospice use in ovarian cancer. (SGO Abstract #226)

190. Age-related preferences regarding end-of-life care discussions among gynecologic oncology patients. (SGO Abstract #188)

192. Palliative care education in gynecologic oncology: A survey of the fellows. (SGO Abstract #190)

Rare Ovarian Cancers

151. Carcinosarcoma of the ovary: A case–control study. (SGO Abstract #149)

Survival Data

80. Ten-year relative survival for epithelial ovarian cancer. (SGO Abstract #78)

83. Impact of beta blockers on epithelial ovarian cancer survival. (SGO Abstract #81)

176. Revisiting the issue of race-related outcomes in patients with stage IIIC papillary serous ovarian cancer who receive similar treatment. (SGO Abstract #174)

186. The impact of diabetes on survival in women with ovarian cancer. (SGO Abstract #184)

284. Survival following ovarian versus uterine carcinosarcoma. (SGO Abstract #282)

285. The unique natural history of mucinous tumors of the ovary. (SGO Abstract #283)

292. Stage IC ovarian cancer: Tumor rupture versus ovarian surface involvement. (SGO Abstract #290)

Survivorship

191. Menopausal symptoms and use of hormone replacement therapy: The gynecologic cancer survivors’ perspective. (SGO Abstract #189)

Other

4. From guidelines to the front line: Only a minority of the Medicare population with advanced epithelial ovarian cancer receive optimal therapy. (SGO Abstract #2)

32. Efficacy of influenza vaccination in women with ovarian cancer. (SGO Abstract #30)

91. Women with invasive gynecologic malignancies are more than 12 times as likely to commit suicide as are women in the general population. (SGO Abstract #89)

231. Attrition of first-time faculty in gynecologic oncology: Is there a difference between men and women? (SGO Abstract #229)

238. Relative impact of cost drivers on the increasing expense of inpatient gynecologic oncology care. (SGO Abstract #236)

Late-Breaking Abstracts

About Society of Gynecologic Oncologists (SGO)

The SGO is a national medical specialty organization of physicians and allied healthcare professionals who are trained in the comprehensive management of women with malignancies of the reproductive tract. Its purpose is to improve the care of women with gynecologic cancer by encouraging research, disseminating knowledge which will raise the standards of practice in the prevention and treatment of gynecologic malignancies, and cooperating with other organizations interested in women’s health care, oncology and related fields. The Society’s membership, totaling more than 1,400, is primarily comprised of gynecologic oncologists, as well as other related medical specialists including medical oncologists, radiation oncologists, nurses, social workers and pathologists. SGO members provide multidisciplinary cancer treatment including chemotherapy, radiation therapy, surgery and supportive care. More information on the SGO can be found at www.sgo.org.

About Gynecologic Oncologists

Gynecologic oncologists are physicians committed to the comprehensive treatment of women with cancer. After completing four years of medical school and four years of residency in obstetrics and gynecology, these physicians pursue an additional three to four years of training in gynecologic oncology through a rigorous fellowship program overseen by the American Board of Obstetrics and Gynecology. Gynecologic oncologists are not only trained to be skilled surgeons capable of performing wide-ranging cancer operations, but they are also trained in prescribing the appropriate chemotherapy for those conditions and/or radiation therapy when indicated. Frequently, gynecologic oncologists are involved in research studies and clinical trials that are aimed at finding more effective and less toxic treatments to further advance the field and improve cure rates.

Studies on outcomes from gynecologic cancers demonstrate that women treated by a gynecologic oncologist have a better likelihood of prolonged survival compared to care rendered by non-specialists. Due to their extensive training and expertise, gynecologic oncologists often serve as the “team captain” who coordinates all aspects of a woman’s cancer care and recovery. Gynecologic oncologists understand the impact of cancer and its treatments on all aspects of women’s lives including future childbearing, sexuality, physical and emotional well-being—and the impact cancer can have on the patient’s whole family.

Sources:

Additional Information:


Novel Cancer-Targeting “Cornell Dot” Nanoparticle Approved for First-In-Human Clinical Trial

“Cornell Dots” — brightly glowing nanoparticles — may soon be used to light up cancer cells to aid in diagnosing and treating cancer. The U.S. Food and Drug Administration (FDA) has approved the first clinical trial in humans of the new technology. It is the first time the FDA has approved using an inorganic material in the same fashion as a drug in humans.

“Cornell Dots” (or “C dots”) — brightly glowing nanoparticles — may soon be used to light up cancer cells to aid in diagnosing and treating cancer. The U.S. Food and Drug Administration (FDA) has approved the first clinical trial in humans of the new technology. It is the first time the FDA has approved using an inorganic material in the same fashion as a drug in humans.

Michelle Bradbury, M.D., Ph.D., Clinician-Scientist, Neuroradiology Service, Memorial Sloan-Kettering Cancer Center; Assistant Professor, Radiology, Weill Cornell Medical College; Lead Study Investigator

Researchers at Memorial Sloan-Kettering Cancer Center’s Nanotechnology Center, along with collaborators at Cornell University and Hybrid Silica Technologies, have received approval for their first Investigational New Drug Application (IND) from the FDA for an ultrasmall silica inorganic nanoparticle platform for targeted molecular imaging of cancer, which may be useful for cancer treatment in the future. Center researchers are about to launch their first-in-human clinical trial in melanoma patients using this first-of-its-kind inorganic nanoparticle to be approved as a drug. “This is a very exciting and important first step for this new particle technology that we hope will ultimately lead to significant improvements in patient outcomes and prognoses for a number of different cancers,” said Michelle Bradbury, M.D., Ph.D., a clinician-scientist on Memorial Sloan-Kettering’s Neuroradiology Service and an assistant professor of radiology at Weill Cornell Medical College, who is the lead investigator of the study, along with Snehal Patel, M.D., a surgeon on Memorial Sloan-Kettering’s Head and Neck Service, who is a co-principal investigator.

“This is a very exciting and important first step for this new particle technology that we hope will ultimately lead to significant improvements in patient outcomes and prognoses for a number of different cancers.”

— Michelle Bradbury, M.D., Ph.D., lead investigator of the study and clinician-scientist on Memorial Sloan-Kettering’s Neuroradiology Service and an assistant professor of radiology at Weill Cornell Medical College

C dots were initially developed as optical probes at Cornell University, Ithaca, by Ulrich Wiesner, Ph.D., a professor of materials science and engineering who, along with Hybrid Silica Technologies, the supplier of C dots, has spent the past eight years precisely engineering these particles. C dots are silica spheres less than 8 nanometers in diameter that enclose several dye molecules. (A nanometer is one-billionth of a meter, about the length of three atoms in a row.) The silica shell, essentially glass, is chemically inert and small enough to pass through the body and out in the urine. For clinical applications, the dots are coated with polyethylene glycol so the body will not recognize them as foreign substances.

C dots were subsequently modified at Memorial Sloan-Kettering for use in PET (positron emission tomography) imaging. C dots are tiny silica spheres that contain dye that glows three times more brightly than simple free dyes when excited by light of a specific wavelength. C dots can “light up” cancer cells, and act as tumor tracers for tracking the movement of cells and assisting in the optical diagnosis of tumors near the skin surface. The attachment of a radioactive label produces a new generation of multimodal (PET-optical) particle probes that additionally enable deeper detection, imaging, and monitoring of drug delivery using three-dimensional PET techniques.

Ulrich Wiesner, Ph.D. (left), a Cornell University Professor of Materials Science & Engineering, works with graduate students Jennifer Drewes & Kai Ma to characterize the size & brightness of C dots in their Bard Hall lab. (Photo: Jason Koski/University Photography)

C dots can be tailored to any particle size. Previous imaging experiments in mice conducted by the Memorial Sloan-Kettering team showed that particles of a very small size (in the 5 to 7 nanometer range) could be retained in the bloodstream and efficiently cleared through the kidneys after applying a neutral surface coat. More recently, the research team molecularly customized C dots to create a new particle platform, or probe, that can target surface receptors or other molecules expressed on tumor surfaces and that can be cleared through the kidneys.

Using PET scans, C dots can be imaged to evaluate various biological properties of the tumors, including tumor accumulation, spread of metastatic disease to lymph nodes and distant organs, and treatment response to therapy. The information gained from imaging tumors targeted with this multimodal platform may also assist physicians in defining tumor borders for surgery, and improving real-time visualization of small vascular beds, anatomic channels, and neural structures during surgery.

The purpose of this trial is to evaluate the distribution, tissue, uptake, and safety of the particles in humans by PET imaging. This study will provide data that will serve as a baseline to guide the design of future surgical and oncologic applications in the clinic. “The use of PET imaging is an ideal imaging technology for sensitively monitoring very small doses of this new particle probe in first-in-human trials,” added Steven Larson, M.D., Chief of Memorial Sloan-Kettering’s Nuclear Medicine Service.

Memorial Sloan-Kettering nanochemist Oula Penate Medina, Ph.D., notes that “this is an important trial in that it will help to answer a number of key questions regarding future potential applications of this multimodal system. Once the door has been opened, new and emerging fields, such as targeted drug delivery, can be investigated. We expect that these particles can be adapted for multiple clinical uses, including the early diagnosis and treatment of various cancers, as well as for sensing changes in the microenvironment.”

“This clinical trial is the culmination of a longstanding collaborative effort with our colleagues at Cornell and Hybrid Silica Technologies, as well as a testament to our own institutional colleagues here at the Center,” Dr. Bradbury said. “With the support of many, in particular the Office of Clinical Research, we’ve pushed to translate the C dots from a laboratory idea to our first FDA IND-approved inorganic nanomedicine drug product to be tested in the clinic,” Dr. Bradbury said.

The work was funded in part by the Clinical and Translational Science Center, Weill Cornell Medical College, the Cornell Nanobiology Center, and the National Institutes of Health (NIH) Small-Animal Imaging Research Program (SAIRP). In addition to Drs. Bradbury, Penante-Medina, Larson, Patel, and Wiesner, the following Memorial Sloan-Kettering investigators contributed to and/or supported this work: Pat Zanzonico, Ph.D.; Heiko Schöder, M.D.; Elisa De Stanchina, Ph.D.; Hedvig Hricak, M.D., Ph.D., Chair of the Department of Radiology; as well as Hooisweng Ow, Ph.D., of Hybrid Silica Technologies, Inc.; Memorial Sloan-Kettering’s Office of Clinical Research; and the Cyclotron Core.

Sources:

Yale University Scientists Synthesize Long-Sought-After Anticancer Agent

A team of Yale University scientists has synthesized for the first time a chemical compound  called “lomaiviticin aglycon, ” which led to the development of a new class of molecules that appear to target and destroy cancer stem cells.

A team of Yale University scientists has synthesized for the first time a chemical compound called “lomaiviticin aglycon,” which led to the development of a new class of molecules that appear to target and destroy cancer stem cells.

Chemists worldwide have been interested in lomaiviticin’s potential anticancer properties since its discovery in 2001. But so far, they have been unable to obtain significant quantities of the compound, which is produced by a rare marine bacterium that cannot be easily coaxed into creating the molecule. For the past decade, different groups around the world have been trying instead to synthesize the natural compound in the lab, but without success.

Dr. Seth Herzon (center), along with team members Christina Woo and Liang Lu, synthesized a naturally occurring anticancer compound that scientists worldwide have been trying to replicate in the lab for nearly a decade.

Now a team at Yale, led by chemist Dr. Seth Herzon, has managed to create lomaiviticin aglycon for the first time, opening up new avenues of exploration into novel chemotherapies that could target cancer stem cells, thought to be the precursors to tumors in a number of different cancers including ovarian, brain, lung, prostate and leukemia. Their discovery appears online today in the Journal of the American Chemical Society.

“About three quarters of anticancer agents are derived from natural products, so there’s been lots of work in this area,” Herzon said. “But this compound is structurally very different from other natural products, which made it extremely difficult to synthesize in the lab.”

In addition to lomaiviticin aglycon, Herzon’s team also created smaller, similar molecules that have proven extremely effective in killing ovarian stem cells, said Gil Mor, M.D., Ph.D., a researcher at the Yale School of Medicine who is collaborating with Herzon to test the new class of molecules’ potential as a cancer therapeutic. This family of compounds are called “kinamycins.” The reactive core of the kinamycins also plays a key role in lomaiviticin aglycon, which is even more toxic and could prove even more effective in destroying cancer cells.

The scientists are particularly excited about lomaiviticin aglycon’s potential to kill ovarian cancer stem cells because the disease is notoriously resistant to paclitaxel (Taxol) and carboplatin, two of the most commonly used ovarian cancer chemotherapy drugs. “Ovarian cancer has a high rate of recurrence, and after using chemotherapy to fight the tumor the first time, you’re left with resistant tumor cells that tend to keep coming back,” Mor explained. “If you can kill the stem cells before they have the chance to form a tumor, the patient will have a much better chance of survival — and there aren’t many potential therapies out there that target cancer stem cells right now.”

Image of one of the kinamycin compounds synthesized by Yale researchers destroying ovarian cancer cells (the spherical objects) in less than 48 hours in lab tests. (Credit: Gil Mor)

Herzon’s team, which managed to synthesize the molecule in just 11 steps starting from basic chemical building blocks, has been working on the problem since 2008 and spent more than a year on just one step of the process involving the creation of a carbon-carbon bond. It was an achievement that many researchers deemed impossible, but while others tried to work around having to create that bond by using other techniques, the team’s persistence paid off.

“A lot of blood, sweat and tears went into creating that bond,” Herzon said. “After that, the rest of the process was relatively easy.”

Next, the team will continue to analyze the compound to better understand what’s happening to the stem cells at the molecular level. The team hopes to begin testing the compounds in animals shortly.

“This is a great example of the synergy between basic chemistry and the applied sciences,” Herzon said. “Our original goal of synthesizing this natural product has led us into entirely new directions that could have broad impacts in human medicine.”

Other authors of the paper include Liang Lu, Christina M. Woo and Shivajirao L. Gholap, all of Yale University.

Sources:

British Columbian Researchers Make Groundbreaking Genetic Discovery In Endometriosis-Associated Ovarian Cancers

British Columbian researchers discover that approximately one-half of clear-cell ovarian cancers and one-third of endometrioid ovarian cancers possess ARID1A gene mutations, as reported today in the New England Journal of Medicine.

British Columbian researchers discover that approximately one-half of ovarian clear-cell cancers (OCCC) and one-third of endometrioid ovarian cancers possess ARID1A (AT-rich interactive domain 1A (SWI-like)) gene mutations, as reported today in the New England Journal of Medicine (NEJM). The research paper is entitled ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas, and represents, in large part, the collaborative work of Drs. David Hunstman and Marco Marra.

Dr. David Huntsman, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia

Dr. Marco Marra, Director, Michael Smith Genome Sciences Centre, British Columbia Cancer Agency

David Huntsman, M.D., FRCPC, FCCMG, is a world-renowned genetic pathologist, and the Co-Founder and Acting Director of the Ovarian Cancer Research Program of British Columbia (OvCaRe). He also heads the Centre for Translational and Applied Genomics, located in the British Columbia (BC) Cancer Agency’s Vancouver Centre.  Dr. Huntsman is the Co-Director of the Genetic Pathology Evaluation Centre, Vancouver General Hospital, and the Associate Director of the Hereditary Cancer Program, BC Cancer Agency. He is involved in a broad range of translational cancer research and, as the OvCaRe team leader, has studied the genetic and molecular structure of ovarian cancer for many years. In June 2009, the NEJM published one of Dr. Huntsman’s most recent groundbreaking discoveries:  the identification of  mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors.

Marco Marra, Ph.D. is the Director of the BC Cancer Agency’s Michael Smith* Genome Sciences Centre (GSC) , one of eight BC Cancer Agency specialty laboratories. Dr. Marra is internationally recognized as a preeminent leader in the field of genetics.  His leadership has helped transform the GSC into one of the world’s most advanced and productive centers for development and application of genomics, bioinformatics and related technologies. The work of the GSC , along with collaborations involving the BC Cancer Agency and other local, national and international researchers and organizations, have led to several major scientific breakthroughs over the past decade.

*Dr. Michael Smith won the 1993 Nobel Prize in chemistry for his development of oligonucleotide-based site-directed mutagenesis, a technique which allows the DNA sequence of any gene to be altered in a designated manner. His technique created an groundbreaking method for studying complex protein functions, the basis underlying a protein’s three-dimensional structure, and a protein’s interaction with other molecules inside the cell.

Tackling Ovarian Cancer, “One Subtype At a Time”

In December 2008, the OvCaRe team announced an important discovery about the genetics of ovarian cancer – that instead of being one single disease, it is made up of a spectrum of distinct diseases. “Until now,” says OvCaRe team leader David Huntsman, “ovarian cancer has been treated as a single disease both in the cancer clinic and the research lab.” This may help explain why there have been many fewer advances in ovarian cancer research and treatment than for other cancer types.

On the heels of this important finding, Huntsman says his team decided to tackle ovarian cancers “one subtype at a time.” For its first target, the team chose granulosa cell ovarian tumors, which account for five percent of ovarian tumors and have no known drug treatments. Working with research colleagues at the GSC, Huntsman’s team used the latest genomic sequencing equipment to decipher the genetic code of this ovarian cancer subtype.

“[T]en years ago, ovarian cancer appeared to be an unsolvable problem—the liberating moment came when we established that ovarian cancer is actually a number of distinct diseases … We tailor our research approach to each subtype with the hope of developing effective treatments specific to each disease.”

Dr. David Huntsman, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia.

The genomic sequencing study results were illuminating, says Huntsman, as the research team was able to identify “a single ‘spelling mistake’ in this tumor’s DNA.” Still, Huntsman is buoyed by the promise of this research and its potential to save lives. “We’ve had dozens of letters and emails from women around the world with granulosa cell tumors, who’ve written to thank us saying this discovery has given them hope they never thought they would have. Reading these letters has been both incredibly humbling and inspiring for our team.” Libby’s H*O*P*E*™ reported Dr. Huntsman’s critical ovarian cancer discovery on June 10, 2009.

The OvCaRe team’s research findings have already been used to advance the care of BC patient Barbara Johns, a fourth grade teacher whose granulosa cell tumor was surgically removed in February 2009. “This could lead to new non-surgical treatment options for patients with this type of cancer,” says Johns, who was the first patient to benefit from the new diagnostic test. “It’s definitely a step in the right direction.”

Listen to a brief audio excerpt taken from an interview with Dr. David Huntsman, in which he explains why this is an exciting time for ovarian cancer research.

The Ovarian Cancer Research Program of British Columbia

Select NEJM Article Authors (left to right): Drs. Sohrab Shah, David Huntsman, Dianne Miller, C. Blake Gilks

OvCaRe, a multi-institutional and multi-disciplinary ovarian cancer research group, was developed as a collaboration between the BC Cancer Agency, the Vancouver Coastal Health Research Institute, and the University of British Columbia.  The OvCaRe program includes clinicians and research scientists from Vancouver General Hospital (VGH) and the BC Cancer Agency, who specialize in gynecology, pathology, and medical oncology. As noted above, Dr. Huntsman leads the OvCaRe team as its Co-Founder and Acting Director.

A team approach has ensured the building of translational research platforms, accessible to all OvCaRe team members regardless of institutional affiliation or medical/scientific discipline. The OvCaRe program research platforms include a gynecologic cancer tumor bank, the Cheryl Brown Ovarian Cancer Outcomes Unit, a tissue microarray core facility for biomarker studies, a xenograft core facility for testing experimental therapeutics, and a genomics informatics core facility. OvCaRe is developing two additional core facilities to improve knowledge dissemination and clinical trials capacity.

Although OvCaRe was formed less than ten years ago, the team has been recognized for several groundbreaking medical and scientific discoveries related to the understanding and management of ovarian cancer. The significant discoveries reported within the past two years are listed below.

  • Proved that various subtypes of ovarian ovarian are distinct diseases, and reported that potential treatment advances depend on both clinically managing and researching these subtypes as separate entities (2008)( PMID: 19053170).
  • Identified mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors using next generation sequencing – the first clinically relevant discovery made with this new technology (2009)(PMID: 19516027).
  • Discovered that women with earlier stage ovarian clear-cell cancer may benefit from lower abdominal radiation therapy (2010)(PMID: 20693298).

In many cases, these contributions have already led to changes in clinical practice in British Columbia. The international reputation of Vancouver’s OvCaRe team ensures that the positive impact of these changes is felt immediately throughout British Columbia, while also being emulated in other jurisdictions worldwide.  These contributions were made possible due to the population-based cancer system in British Columbia and strong support from the BC Cancer Foundation and the Vancouver General Hospital (VGH) & University of British Columbia (UBC) Hospital Foundation.

Background:  Ovarian Clear-Cell Cancer

Ovarian cancer ranks as the 5th deadliest cancer among U.S. women.[1] There are four general subtypes of epithelial ovarian cancer — serous, clear-cell, endometrioid, and mucinous.[2] High-grade serous ovarian cancer is the most common and represent approximately 70% of all cases of epithelial ovarian cancer in North America. [3]

The OCCC subtype represents 12 percent of ovarian cancers in North America; however, it represents up to 20 percent of ovarian cancers diagnosed in Japan and other East Asian countries. [3,4] OCCC possesses unique clinical features such as a high incidence of stage I disease, a large pelvic mass, an increased incidence of vascular thromboembolic complications, and hypercalcemia. [4-6] Both OCCC and endometrioid ovarian cancer are frequently associated with endometriosis. [4-6] The genetic events associated with the transformation of endometriosis into ovarian clear-cell cancer and endometrioid cancer are unknown.

Clear cell carcinoma of the ovary

OCCC does not respond well to the standard platinum and taxane-based ovarian cancer chemotherapy: response rates are 15 per cent compared to 80 per cent for the most common type of ovarian cancer, high-grade serous ovarian cancer. [4-6] However, the exact mechanisms underlying OCCC’s resistance to chemotherapy is not fully understood. Although several mechanisms involved in drug resistance exist in OCCC, including decreased drug accumulation, increased drug detoxification, increased DNA repair activity [4-6], and low proliferation activity[4]; no particular chemoresistance system has been identified. Due to the general chemoresistant nature of OCCC, it is generally stated that the prognosis for advanced-stage or recurrent OCCC is poor. [3, 7-8] The prognosis for OCCC that is diagnosed in Stage I, and treated by complete cytoreduction that results in little or no residual disease, is usually good. [8-10]

Although OCCC is the second leading cause of death from ovarian cancer, it is relatively understudied by the medical and research community. Despite this fact, there have been a few important studies involving this subtype of ovarian cancer.

Various researchers have long noted that OCCC has a distinct genetic profile, as compared to other types of epithelial ovarian cancer.[6, 11-14] Gene expression profiling can serve as a powerful tool to determine biological relationships, if any, between tumors.  In fact, National Cancer Institute (NCI) and Memorial Sloan-Kettering Cancer Center (MSKCC) researchers observed that clear-cell cancers share similarity in gene expression profiles, regardless of the human organ of origin (including kidney), and could not be statistically distinguished from one another. [13] The researchers found that the same was not true for the non-OCCC forms of epithelial ovarian cancer.  Several investigators have made similar observations. [14-16] It is important to note, however, that there are significant genetic differences between OCCC and renal clear-cell cancer (RCCC).  For example, abnormalities of the VHL (Von Hippel-Lindau)/HIF1-α (Hypoxia-inducible factor 1-alphapathway have been identified in the majority of RCCC cases, but not in OCCC cases. [17, 18]

The basic finding that clear-cell tumors show remarkably similar gene expression patterns regardless of their organ of origin is provocative.  This NCI/MSKCC study finding raises the question of whether therapies used to treat RCCC would be effective against OCCC.  Targeted-therapies such as VEGFR inhibitors (e.g., sunitinib (Sutent®)), PDGFR inhibitors (e.g., sorafenib (Nexavar®)), m-TOR inhibitors (e.g., temsirolimus (Torisel®) & everolimus (Afinitor®)), and anti-angiogenesis drugs (e.g., bevacizumab (Avastin®)) are used to treat RCCC. Notably, Fox Chase Cancer Center researchers performed preclinical testing of everolimus on ovarian cancer cell lines and xenografted mice and observed significant anti-tumor activity. [19, 20] The Division of Clinical Gynecologic Oncology at the Massachusetts General Hospital also observed the anti-tumor effect of sunitinib in one refractory OCCC patient that recurred after nine years and four prior treatment lines. [21] Japanese researchers have also highlighted this potential approach to fighting OCCC. [22-25]

All of the above-mentioned drugs used to treat RCCC are currently being tested in ovarian cancer and solid tumor clinical studies.  Accordingly, these drugs are generally available to advanced-stage and recurrent OCCC patients who do not respond to prior taxane/platinum therapy and other standard lines of treatment, assuming such patients satisfy all clinical study enrollment criteria. [26-30]

In a 2009 study conducted by researchers at Johns Hopkins and University of California, Los Angeles (UCLA), it was discovered that approximately one-third of OCCCs contained PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) gene mutations. [31] Testing patients with cancer for PIK3CA gene mutations may be feasible and allow targeted treatment of the PI3K-AKTmTOR cellular signaling pathway, according to the results of a University of Texas, M.D. Anderson Cancer Center study presented at the 2009 AACR (American Association for Cancer Research)-NCI-EORTC (European Organization For Research & Treatment of Cancer) International Conference on Molecular Targets and Cancer Therapeutics. [31] The M.D. Anderson study results may carry great significance in the future because there are several PI3K signaling pathway targeting drugs in clinical development for use against ovarian cancer and solid tumors. [32]

Also in 2009, researchers affiliated with UCLA, the Mayo Clinic, and Harvard Medical School announced that they established a biological rationale to support the clinical study of the U.S. Food & Drug Administration (FDA)-approved leukemia drug dasatinib (Sprycel®), either alone or in combination with chemotherapy, in patients with ovarian cancer (including OCCC). [33]

In August 2010, Dr. Ken Swenerton, a senior OvCaRe team member and co-leader of OvCaRe’s Cheryl Brown Ovarian Cancer Outcomes Unit, reported provocative findings relating to the use of adjuvant radiotherapy to fight OCCC. [34] Dr. Swenerton is also a co-chair of the NCI Gynecologic Cancer Steering Committee (GCSC) Ovarian Cancer Task Force.  The NCI GCSC determines all phase III clinical trials for gynecologic cancers in the U.S. and other jurisdictions. The population-based, retrospective study conducted by OvCaRe reported that a 40 percent decrease in disease specific mortality was associated with adjuvant radiotherapy administered to women with stage I (other than grade 1 tumors), II, & III clear-cell, endometrioid, and mucinous ovarian cancers, who possessed no residual (macroscopic) disease following complete cytoreductive surgery. Although the study dataset was too small to discriminate effects among the clear-cell, endometrioid and mucinous ovarian cancer histologies, the overall results highlight the curative potential of adjuvant radiotherapy in select non-serous ovarian cancer patients.  Moreover, there is limited scientific and anecdotal evidence set forth in past studies that supports the select use of radiotherapy against OCCC. [35-38]

BRCA 1 (BReast CAncer gene 1) & BRCA 2 (BReast CAncer gene 2) mutations increase a woman’s lifetime risk of breast and ovarian cancer. [39] In at least one small study, BRCA2 germline (inherited) and somatic (non-inherited) gene mutations were identified in 46 percent of the OCCC samples tested. [40] This provocative study brings into question the potential use of PARP (Poly (ADP-ribose) polymerase) inhibitors against OCCC in select patients. [41] PARP inhibitors have shown effectiveness against germline BRCA gene mutated ovarian cancers, [42, 43] and may be effective against somatic BRCA gene mutated ovarian cancers. [44, 45]

International researchers continue to identify theoretical therapeutic drug targets for OCCC. These targets include:  IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3) [46], HNF-1beta (hepatocyte nuclear factor-1beta) [47], annexin A4  [48], GPC3(Glypican-3) [49], osteopontin [50], sFRP5 (secreted frizzled-related protein 5) [51], VCAN (versican) [52], transcription factor POU6F1 (POU class 6 homeobox 1) [53], and microRNA mir-100 [54].

Although researchers have identified that OCCC is distinct from high-grade serous carcinoma, OCCC-specific biomarkers and treatments have not been broadly adopted. Despite the theoretical approaches and study results highlighted above, there are no definitive (i.e., clinically-proven) anti-cancer agents for OCCC, and without understanding the molecular basis of this ovarian cancer subtype in much greater detail, the development of more targeted therapies is unlikely.

NEJM ARID1A Study Methodology

The OvCaRe team research consisted of four major analyses as described below.

  • RNA Sequencing of OCCC Tumor Samples and Cell Line (Discovery Cohort)

By way of background, DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called genes.

RNA is the genetic material that transcribes (i.e., copies) DNA instructions and translates them into proteins.  It is RNA’s job to transport the genetic information out of the cell’s nucleus and use it as instructions for building proteins.  The so-called “transcriptome” consists of all RNA molecules within our cells, including messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). The sequence of RNA mirrors the sequence of the DNA from which it was transcribed or copied. Consequently, by analyzing the entire collection of RNAs (i.e., the transcriptome) in a cell, researchers can determine when and where each gene is turned on or off in our cells and tissues.  Unlike DNA, the transcriptome can vary with external environmental conditions. Because it includes all mRNA transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at any given time.

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein.  Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene.  Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

The first study analysis involved the RNA sequencing of 18 patient OCCC tumors and 1 OCCC cell line.  The primary purpose of this step was to discover any prevalent genetic mutations within the sample tested.  Specifically, the research team sequenced the whole transcriptomes of the OCCC tumors and the single OCCC cell line and discovered  a variety of somatic (non-inherited) mutations in the ARID1A gene.  The researchers also found mutations in CTNNB1(catenin beta-1 gene), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue gene), and PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide gene).

ARID1A encodes the BAF250a protein, a key component of the SWI-GNF chromatin remodeling complex which regulates many cellular processes, including development, differentiation, proliferation, DNA repair, and tumor suppression. [55] The BAF250a protein encoded by ARID1A is believed to confer specificity in regulation of gene expression.

To date, mutations or other aberrations in ARID1A have not been identified in ovarian cancer, but have been identified in breast and lung cancer cell lines. [56] Other researchers have suggested that ARID1A is a tumor-suppressor gene. [56]

  • DNA Sequencing of OCCC Tumor Samples and Cell Lines (Discovery Cohort + Mutation Validation Cohort)

The finding of multiple types of mutations in a single gene, ARID1A, within the discovery cohort, led researchers to perform a mutation validation analysis.  The researchers only conducted analyses with respect to ARID1A, because it was already known that mutations in CTNNB1, KRAS, and PIK3CA are recurrent in ovarian cancer. [31, 57]

This step of the research involved DNA sequencing of 210 samples of various subtypes of ovarian cancer and one OCCC cell line, along with the 18 OCCC tumor samples and one OCCC cell line used in the discovery cohort. Upon completion of the DNA sequencing, the researchers identified ARID1A mutations in 55 of 119 (46%) OCCCs, 10 of 33 (30%) endometrioid cancers, and none of the 76 high-grade serous cancers. Also, the researchers found primarly somatic (non-inherited) truncating mutations.

Based on the second study analysis, the researchers report that the presence of ARID1A mutations are strongly associated with OCCCs and endometrioid cancers.  These two subtypes of ovarian cancer, as noted above, are associated with endometriosis.

  • Testing For BAF250a Protein Expression

In the third study analysis, the researchers used immunohistochemical analysis (IHC) to measure BAF250a protein expression in 450 ovarian cancers.

The first round of IHC testing involved 182 ovarian cancers which were available from the discovery cohorts and the mutation-validation cohorts: 73 OCCCs, 33 endometrioid cancers, and 76 high-grade serous ovarian cancers.  The goal of the first IHC analysis was to compare the loss of BAF250a protein expression in OCCCs and endometrioid cancers, with and without ARID1A mutations. Upon completion, the researchers identified loss of BAF250a protein expression in 27 of 37 (73%) OCCCs, and 5 of 10 (50%) endometrioid cancers, which possessed ARID1A mutations. In contrast, loss of BAF250a protein expression was identified in only 4 of 36 (11%) OCCCs, and 2 of 23  (9%) endometrioid cancers, which did not possess ARID1A mutations. Thus, the loss of BAF250a protein expression was much greater in OCCCs and endometrioid cancers with ARID1A mutations.

The goal of the second IHC analysis was to compare loss of BAF250a protein expression among all OCCCs, endometrioid cancers, and high-grade serous cancers. The researchers identified loss of BAF250a protein expression in 31 of 73 (42%) OCCCs, and 7 of 33 (21%) endometrioid cancers, as compared to 1 of 76 (1%) high-grade serous cancers. Thus, the loss of BAF250a protein expression was much greater in the OCCCs and endometrioid cancers, as compared to high-grade serous cancers, regardless of ARID1A mutation status.

The second round of IHC testing measured loss of BAF250a protein expression within the IHC validation cohort. This analysis revealed that 55 of 132 (42%) OCCCs, 39 of 125 (31%) endometrioid cancers, and 12 of 198 (6%) high-grade serous cancers, lost BAF250a protein expression.

By the end of IHC testing, the researchers established that the loss of BAF250a protein expression was consistently more common in OCCCs and endometrioid cancers than in high-grade serous cancers, when assessed in the discovery and mutation-validation cohorts, and again in the IHC cohort.

The researchers also reported that no significant associations with loss of BAF250a protein expression were noted on the basis of age at disease presentation, disease stage, or disease-specific survival within any of the ovarian cancer subtypes.

  • Analysis of ARID1A Gene Mutations & BAF250a Protein Expression In Continguous Atypical Endometriosis

The fourth study analysis evaluated samples taken from two OCCC patients who had ARID1A mutations and contiguous atypical endometriosis. In both instances, the patient sample included the primary OCCC tumor, clones derived from contiguous atypical endometriosis, and clones derived from a distant endometriotic lesion.

In the first patient, ARID1A mutations were identified in the OCCC tumor, and 17 of 42 clones derived from contiguous atypical endometriosis, but in none of the 52 clones derived from a distant endometriotic lesion. The samples taken from this patient’s OCCC tumor and atypical endometriosis revealed loss of BAF250a protein expression; however, expression was maintained in the distant endometriotic lesion. HNF-1beta was expressed in the OCCC tumor, but not in the contiguous atypical or distant endometriosis. Estrogen receptor expression tested positive in both the contiguous atypical and distant endometriosis, but not in the OCCC tumor.

In the second patient, ARID1A mutations and a CTNNB1 mutation were identified in the OCCC tumor and contiguous atypical endometriosis, but not in a distant endometriotic lesion.

Results Summary

Based on the foregoing discussion, the major OvCaRe study findings are summarized below.

  • 46% of patients with OCCC and 30% of those with endometrioid cancers had somatic (non-inherited) truncating or missense mutation in the ARID1A gene.
  • No ARID1A mutations were identified in the 76 high-grade serous cancers analyzed.
  • Loss of BAF250a protein expression was identified in 36% of OCCCs and endometrioid cancers, but in only 1% of high-grade serous cancers.
  • Loss of BAF250a protein expression was seen in 73% and 50% of OCCCs and endometrioid cancers with an ARID1A mutation, respectively, and in only 11% and 9% of samples without ARID1A mutations, respectively.
  • The majority of cancers possessing somatic ARID1A mutations and loss of BAF250a expression appear to have a normal (also known as “wild-type”) allele present.
  • DNA and RNA sequencing data reveals that the ratio of abnormal (mutant) to normal (wild-type) alleles at both the DNA and RNA levels is consistent, thereby suggesting that epigenetic silencing is not a significant factor.
  • In two patients, ARID1A mutations and loss of BAF250a protein expression were identified in the OCCC tumor and contiguous atypical endometriosis, but not in distant endometriotic lesions.

Conclusions

The researchers note in the study that ARID1A is located at chromosome 1p36.11. Although this fact carries little meaning for a layperson, the researchers explain that this chromosomal region is commonly deleted in tumors, and that such deletions could contain tumor-suppressor genes. Based upon the totality of the data, the OvCaRe team believes that ARID1A is a tumor-suppressor gene which is frequently disrupted in OCCCs and endometrioid cancers.  Although a bit speculative due to small sample size, the researchers also believe that because ARID1A mutation and loss of BAF250a protein expression were identified in precancerous endometriotic lesions, such events represent a transformation of endometriosis into cancer.

“The finding that ARID1A is the most frequently mutated gene described thus far in endometrioid and clear cell ovarian cancers represents a major scientific breakthrough. This discovery also sheds light on how endometriosis predisposes to the development of these cancers. The novel insights provided by this work have the exciting potential to facilitate advances in early diagnosis, treatment and prevention of endometrioid and clear cell cancers, which account for over 20 per cent of ovarian cancer cases.”

Dr. Andrew Berchuck, Director, Division of Gynecologic Oncology, Duke University Medical Center

Inaugural Ovarian Clear-Cell Carcinoma Symposium

International Clear-Cell Carcinoma of the Ovary Symposium (June 24, 2010)

On June 24, 2010, a group of preeminent clinicians and cancer research scientists from around the world gathered for the Clear Cell Carcinoma of the Ovary Symposium (the Symposium), which was held at the University of British Columbia. To my knowledge, the Symposium is the first global scientific meeting dedicated to a specific subtype of ovarian cancer, namely OCCC.

At the invitation of Dr. David Huntsman, the founder of the Symposium, I had the distinct pleasure and honor of attending this prestigious and informative meeting as an observer. Dr. Huntsman was aware that my 26-year old cousin, Libby, died from OCCC, and he thought that the Libby’s H*O*P*E*™ community would benefit from the information presented at the Symposium.

The stated goal of the Symposium was to empower the international clinical and research community interested in OCCC, and allow that community to focus on the major barriers to improving OCCC outcomes. Moreover, the Symposium speakers and attendees were charged with presenting unpublished data and providing provocative OCCC questions for group discussion. The countries represented at that Symposium included Australia, Canada, Italy, Japan, the United Kingdom, and the U.S.

The 1-day event was presented through three major sessions.  The first session addressed issues that challenge the clinical dogma relating to OCCC, and covered topic areas such as epidemiology, surgery, pathology, systemic oncology, and radiation oncology. The second session addressed OCCC molecular pathology and genomics.  The third session addressed global OCCC translational research and covered topic areas including OCCC outcomes from conventional clinical trials, current OCCC clinical trials, and novel approaches to OCCC treatment and the testing of new agents.

The international Symposium presenters, included the following individuals:

  • David Bowtell, Group Leader, Cancer Genetics & Genomics Research Laboratory, Peter MacCallum Cancer Centre; Program Head, Cancer Genetics & Genomics, Peter MacCallum Cancer Centre, Melbourne (Australia).
  • Michael A. Quinn, MB ChB Glas. MGO Melb. MRCP FRCOG FRANZCOG CGO, Director of Oncology/Dysplasia, Royal Women’s Hospital, Melbourne, Australia; Professor, Department of Obstetrics and Gynecology, University of Melbourne; Chair, National Cancer Control Initiative; Chair, Education Committee, International Gynecological Cancer Society; Chair, Ovarian Cancer Research Group, Cancer Council; Member, National Expert Advisory Group on Ovarian Cancer. (Australia)
  • C. Blake Gilks, M.D., FRCPC,  Co-Founder, Ovarian Cancer Research Program of BC; Professor & Acting Head, Department of Pathology and Laboratory Medicine, University of British Columbia; Head of Anatomic Pathology, Vancouver General Hospital; Member, Vancouver Coastal Health Research Institute; Co-Founder & Co-Director, Genetic Pathology Evaluation Centre, Vancouver General Hospital. (Canada)
  • Paul Hoskins, MA, M.B. B. CHIR, MRCP., FRCPC, Clinical Professor, University of British Columbia. (Canada)
  • David Huntsman, M.D., FRCPC, FCCMG, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia; Director, Centre for Translational and Applied Genomics, BC Cancer Agency; Co-Director, Genetic Pathology Evaluation Centre, Vancouver General Hospital; Associate Director, Hereditary Cancer Program, BC Cancer Agency. (Canada)
  • Helen MacKay, M.D., Staff Physician, Division of Medical Oncology and Hematology, Princess Margaret Hospital; Assistant Professor, University of Toronto; Member: (i) ICON 7 Translational Committee (representing NCIC CTG),  (ii) Study Committee of the TFRI Ovarian Cancer Biomarker Program, (iii) Gynecologic Cancer Steering Committee Cervical Cancer Task Force: Intergroup/NCI/National Institutes of Health, (iv) Cervix Working Group (NCIC CTG), (v) Gynecologic Disease Site Group (Cancer Care Ontario), and (vi) the GOC CPD Committee. (Canada)
  • Amit M. Oza, Bsc, MBBS, M.D., FRCPC, FRCP, Senior Staff Physician & Professor of Medicine, Princess Margaret Hospital, University of Toronto; Clinical Studies Resource Centre Member, Ontario Cancer Institute. (Canada)
  • Ken Swenerton, M.D., Co-Leader, Cheryl Brown Ovarian Cancer Outcomes Unit, Ovarian Cancer Research Program of BC; Clinical Professor, Medical Oncology, University of British Columbia; Department of Pathology, Vancouver Coastal Health Research Institute;  Genetic Pathology Evaluation Centre,Vancouver General Hospital; Co-Chair, NCI Gynecologic Cancer Steering Committee Ovarian Cancer Task Force. (Canada).
  • Anna Tinker, M.D., FRCPC, Clinical Assistant Professor, University of British Columbia, Department of Medicine; Medical Oncologist, Oncology, British Columbia Cancer Agency (Canada).
  • Gillian Thomas, M.D., FRCPC, Professor, Department of Radiation Oncology & Obstetrics and Gynecology, University of Toronto; Radiation Oncologist, Odette Cancer Centre; Co-Chair, NCI Gynecologic Cancer Steering Committee; Member, ACRIN Gynecologic Committee; Member, Cervix Committee and Executive Committee, Gynecologic Cancer Intergroup (GCIG); Member, Cervix Committee – Gynecologic Oncology Group (GOG); Associate Editor, International Journal of Gynecologic Cancer. (Canada)
  • Aikou Okamoto, M.D., Department of Obstetrics & Gynecology, Jikei University School of Medicine, Tokyo (Japan).
  • Ian McNeish, MA, Ph.D., MRCP, MRC, Senior Clinical Fellow, Professor of Gynecological Oncology & Honorary Consultant in Medical Oncology, Deputy Director of the Barts Experimental Cancer Medicine Centre, Institute of Cancer, Barts and the London School of Medicine. (United Kingdom) (See Libby’s H*O*P*E*™, April 7, 2009)
  • Michael J. Birrer, M.D., Ph.D., Director of GYN/Medical Oncology at the Massachusetts General Hospital Cancer Center; Professor, Department of Medicine, Harvard Medical School; Co-Chair, NCI Gynecologic Cancer Steering Committee; formerly, Chief of the Molecular Mechanisms Section, Cell and Cancer Biology Branch, NCI Center for Cancer Research; formerly official representative from NCI Center for Cancer Research to the Gynecological Cancer Steering Committee. (United States)(See Libby’s H*O*P*E*™, December 8, 2009)

OvCaRe Ovarian Clear-Cell Carcinoma Research Initiative

As noted above, OCCC has been identified as distinct subtype of ovarian cancer.  OCCC-specific biomarkers or treatments have not been broadly adopted. Moreover, there are currently no clinically proven anti-cancer agents for OCCCs. For this reason, the OvCaRe team and other BC Cancer Agency scientists, have initiated a pioneering OCCC research initiative that consists of six separate, but interrelated projects.

The project will begin with the most fundamental research, the large scale sequencing of RNA and DNA derived from OCCC tumors. In the second, concurrent project, the vast quantities of genome sequence data will be transformed into usable knowledge that will be evaluated for clinical relevance by local and international experts. Identifying and validating novel biomarkers from the data obtained will be the focus of the third project, and the fourth project will permit scientists to specifically target those cellular biochemical signaling pathways that are considered to be useful tools for future drug development. The development and testing of the therapeutic targets and new drugs or new combinations of drugs in animal and human testing will complete this initiative.

The OvCaRe and the BC Cancer Agency scientists have a unique opportunity to completely reshape the scientific and medical understanding of OCCC and impact the way patients with this rare form of cancer are treated. The strength of their research initiative is based on linking the clinical research resources developed through OvCaRe with the genomic sequencing capacity of the BC Cancer Agency’s Genome Sciences Centre, and the drug development capacity of the Centre for Drug Research and Development and the NanoMedicine Research Group.

“This pioneering discovery by Dr. Huntsman and his dedicated ovarian cancer research team will allow the international research community to take the genomic ‘high ground’ in the battle against these formidable subtypes of epithelial ovarian cancer. The Ovarian Cancer Research Program of BC’s reported findings represent a critical first step towards development of one or more personalized targeted therapies to combat these lethal forms of ovarian cancer.”

Paul Cacciatore, Founder, Libby’s H*O*P*E*™

The impact of this research may not be experienced by women diagnosed with OCCC today, but this foundational research must begin immediately so as to impact outcomes in the years to come. Ably led by Dr. David Huntsman, this team of dedicated individuals represents a depth and breadth of medical and scientific expertise not often found in a single geographic location.

The hope is that through the identification of therapeutic targets for OCCC, this team will yield a powerful “superstar” drug such as Herceptin (used successfully for HER-2 positive breast cancer) or Gleevec (used successfully for chronic myelogenous leukemia (CML)). These drugs are examples of therapeutics that were created based on a direct match of an identified genetic target to the therapeutic solution.

This project is of utmost importance as it will define the unique aspects of OCCC and lead to the development of more effective therapies for women diagnosed with this rare subtype of ovarian cancer.

Special Acknowledgments

First and foremost, I want to thank Dr. Huntsman for his intelligence, creative vision and compassion, which he utilizes to great effect each day, in conducting scientific research designed to ultimately benefit all women with OCCC. I also want to thank Dr. Huntsman for the generous invitation to attend the OCCC Symposium in June. It was a privilege and honor to attend and listen to international OCCC experts discuss and debate the merits of various approaches to beating this subtype of epithelial ovarian cancer. In sum, Dr. Huntsman has been extremely generous to me with respect to his time and expertise during my recent trip to Vancouver and throughout my preparation of this article.

Prior to today’s ARID1A gene mutation discovery announcement, women with OCCC did not have a “voice” in the cancer research scientific community. Dr. Huntsman has not only given these women a voice, he has given them hope for the future.  As the late Christopher Reeve said: “Once you choose hope, anything is possible.”

I also want to thank the OvCaRe team members and BC Cancer Agency scientists that I met in Vancouver during my June trip, including Ken Swenerton, M.D., Sohrab Shah, Ph.D., Dianne Miller, M.D., Sam Aparicio, Ph.D., and Blake Gilks, M.D., for taking the time to answer all of my novice questions with a great understanding and passion.

Simply stated, this article would not have been possible without the substantial assistance provided to me by Sharon Kennedy, a Senior Director of Development with the BC Cancer Foundation. Sharon exemplifies the “heart and soul” behind the BC Cancer Foundation’s philanthropic activities.

Last, but certainly not least, I want to thank Mr. Douglas Gray, a highly successful entrepreneur and attorney, for introducing me to the BC scientific cancer research community. Doug is a tireless supporter of all women with OCCC, through his compassion, caring, and philanthropic generosity.

The Talmud says: “And whoever saves a life, it is considered as if he saved an entire world.” Doug Gray is in the business of saving women’s lives.

_________________________________

References:

1/Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin 2010 July 7 (Epub ahead of print).

2/Cellular Classification of Ovarian Epithelial Cancer, Ovarian Epithelial Cancer Treatment (PDQ®)(Health Professional Version), National Cancer Institute, July 9, 2010.

3/Köbel M, Kalloger SE, Huntsman DG, et al. Differences in tumor type in lowstage versus high-stage ovarian carcinomas. Int J Gynecol Pathol 2010;29:203-11.

4/Itamochi H, Kigawa J, Terakawa N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci 2008;99:653-8.

5/Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, et. al.  Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological Behavior, Distinguishing Clear Cell from Other Poor-Prognosis Ovarian CarcinomasCan Res 2002 Aug; 62, 4722-4729.

6/Sugiyama T & Fujiwara K.  Clear Cell Tumors of the Ovary – Rare Subtype of Ovarian Cancer, Gynecologic Cancer, ASCO Educational Book, 2007 ASCO Annual Meeting, June 2, 2007 (Microsoft Powerpoint presentation).

7/Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancersGynecol Oncol. 2008 Jun;109(3):370-6. [Epub 2008 Apr 18].

8/Ma SK, Zhang HT, Wu LY, Liu LY. Prognostic analysis of 88 patients with ovarian clear cell carcinomaZhonghua Zhong Liu Za Zhi. 2007 Oct;29(10):784-8.

9/Takano M, Sasaki N, Kita T, Kudoh K, Fujii K, Yoshikawa T et. alSurvival analysis of ovarian clear cell carcinoma confined to the ovary with or without comprehensive surgical staging; Oncol Rep. 2008 May;19(5):1259-64.

10/Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H et. al.  Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical stagingBr J Cancer. 2006 May 22;94(10):1369-74.

11/Sugiyama T, Kumagai S, & Hatayama S. Treatments of epithelial ovarian cancer by histologic subtype. Gan To Kagaku Ryoho. 2009 Feb;36(2):187-92.

12/Pectasides D, Pectasides E, Psyrri A, Economopoulos T. Treatment Issues in Clear Cell Carcinoma of the Ovary: A Different Entity?Oncologist. 2006 Nov-Dec;11(10):1089-94.

13/Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ et. al.  Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer; Clin Cancer Res. 2005 Sep 15;11(18):6422-30.

14/Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M, et. alGene Expression Patterns in Ovarian CarcinomasMol. Bio. Cell 2003 Dec.; 14(11):4376-4386.

15/Tan DS, Kaye S.  Ovarian clear cell adenocarcinoma: a continuing enigma.  J Clin Pathol. 2007 Apr;60(4):355-60. Epub 2006 Oct 3.

16/ Dent J, Hall GD, Wilkinson N, Perren TJ, Richmond I, Markham AF, et. alCytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridisation. Br J Cancer. 2003 May 19;88(10):1578-83.

17/Costa LJ, Drabkin HA. Renal cell carcinoma: new developments in molecular biology and potential for targeted therapiesOncologist 2007;12:1404-1415.

18/Köbel M, Xu H, Bourne PA, Spaulding BO, Shih IM; Mao TL et. alIGF2BP3 (IMP3) Expression Is a Marker of Unfavorable Prognosis in Ovarian Carcinoma of Clear Cell Subtype. Modern Pathology. 2009;22(3):469-475. [Epub 2009 Jan 9].

19/Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, et. alRAD001[everolimus] inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model.  Clin. Cancer. Res. 2007 Jul; 13, 4261-4270.

20/Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, et. al. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer.  Cancer Res. 2007 Mar 15;67(6):2408-13.

21/Rauh-Hain JA, Penson RT. Potential benefit of Sunitinib in recurrent and refractory ovarian clear cell adenocarcinoma. Int J Gynecol Cancer. 2008 Sep-Oct;18(5):934-6. Epub 2007 Dec 13.

22/Yoshida S, Furukawa N, Haruta S, et. al. Theoretical model of treatment strategies for clear cell carcinoma of the ovary: focus on perspectives. Cancer Treat Rev. 2009 Nov;35(7):608-15. Epub 2009 Aug 8. Review.

23/Mabuchi S, Kawase C, Altomare DA, et. al.  mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res. 2009 Sep 1;15(17):5404-13. Epub 2009 Aug 18.

24/Miyazawa M, Yasuda M, Fujita M, et. al. Therapeutic strategy targeting the mTOR-HIF-1alpha-VEGF pathway in ovarian clear cell adenocarcinoma. Pathol Int. 2009 Jan;59(1):19-27.

25/Mabuchi S, Kawase C, Altomare DA, et. al.  Vascular endothelial growth factor is a promising therapeutic target for the treatment of clear cell carcinoma of the ovary. Mol Cancer Ther. 2010 Aug;9(8):2411-22. Epub 2010 Jul 27.

26/For open ovarian cancer clinical trials using sunitinib, CLICK HERE; For open solid tumor clinical trials using sunitinib, CLICK HERE.

27/For open ovarian cancer clinical trials using sorafenib CLICK HERE; For open solid tumor clinical trials using sorafenib, CLICK HERE.

28/For open ovarian cancer clinical trials using temsirolimus, CLICK HERE; For open solid tumor clinical trials using temsirolimus, CLICK HERE.

29/For open ovarian cancer clinical trials using everolimus, CLICK HERE; For open solid tumor clinical trials using everolimus, CLICK HERE.

30/For open ovarian cancer clinical trials using bevacizumab, CLICK HERE; For open solid tumor clinical trials using bevacizumab, CLICK HERE.

31/PI3K Pathway: A Potential Ovarian Cancer Therapeutic Target?, by Paul Cacciatore, Libby’s H*O*P*E*™, November 30, 2009.

32/For open ovarian cancer clinical trials using a phosphoinositide 3′-kinase (PI3K)-targeted therapy; CLICK HERE; For open solid tumor clinical trials using a phosphoinositide 3′-kinase (PI3K)-targeted therapy, CLICK HERE.

33/UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®),by Paul Cacciatore, Libby’s H*O*P*E*™, November 30, 2009.

34/Swenerton KD, Santos JL, Gilks CB, et. al. Histotype predicts the curative potential of radiotherapy: the example of ovarian cancers. Ann Oncol. 2010 Aug 6. [Epub ahead of print]

35/Nagai Y, Inamine M, Hirakawa M, et. al. Postoperative whole abdominal radiotherapy in clear cell adenocarcinoma of the ovary. Gynecol Oncol. 2007 Dec;107(3):469-73. Epub 2007 Aug 31.

36/Skirnisdottir I, Nordqvist S, Sorbe B. Is adjuvant radiotherapy in early stages (FIGO I-II) of epithelial ovarian cancer a treatment of the past? Oncol Rep. 2005 Aug;14(2):521-9. PubMed PMID: 16012740.

37/Takai N, Utsunomiya H, Kawano Y, et. al. Complete response to radiation therapy in a patient with chemotherapy-resistant ovarian clear cell adenocarcinoma. Arch Gynecol Obstet. 2002 Dec;267(2):98-100.

38/Suzuki M, Saga Y, Tsukagoshi S, et. al. Recurrent ovarian clear cell carcinoma: complete remission after radiation in combination with hyperthermia; a case study and in vitro study. Cancer Biother Radiopharm. 2000 Dec;15(6):625-8.

39/BRCA1 and BRCA2: Cancer Risk and Genetic Testing, National Cancer Institute Fact Sheet, Cancer Topic, National Cancer Institute, May 29, 2009.

40/Goodheart MJ, Rose SL, Hattermann-Zogg M, et. al. BRCA2 alteration is important in clear cell carcinoma of the ovary. Clin Genet. 2009 Aug;76(2):161-7. Epub 2009 Jul 28.

41/For open ovarian cancer clinical trials using PARP inhibitors, CLICK HERE; For open solid tumor clinical trials using PARP inhibitors, CLICK HERE.

42/Audeh MW, Carmichael J, Penson RT, et. al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010 Jul 24;376(9737):245-51. Epub 2010 Jul 6.

43/PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, by Paul Cacciatore, Libby’s H*O*P*E*™, April 23, 2010.

44/Konstantinopoulos PA, Spentzos D, Karlan BY, et. al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010 Aug 1;28(22):3555-61. Epub 2010 Jun 14.

45/Bast RC Jr, Mills GB. Personalizing therapy for ovarian cancer: BRCAness and beyond. J Clin Oncol. 2010 Aug 1;28(22):3545-8. Epub 2010 Jun 14.

46/Köbel M, Xu H, Bourne PA, et. al. IGF2BP3 (IMP3) expression is a marker of unfavorable prognosis in ovarian carcinoma of clear cell subtype. Mod Pathol. 2009 Mar;22(3):469-75. Epub 2009 Jan 9.

47/Köbel M, Kalloger SE, Carrick J, Huntsman D, et. al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol. 2009 Jan;33(1):14-21.

48/Kim A, Serada S, Enomoto T, Naka T. Targeting annexin A4 to counteract chemoresistance in clear cell carcinoma of the ovary. Expert Opin Ther Targets. 2010 Sep;14(9):963-71.

49/Maeda D, Ota S, Takazawa Y, et. al. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod Pathol. 2009 Jun;22(6):824-32. Epub 2009 Mar 27.

50/Matsuura M, Suzuki T, Saito T. Osteopontin is a new target molecule for ovarian clear cell carcinoma therapy. Cancer Sci. 2010 Aug;101(8):1828-33. Epub 2010 May 12.

51/Ho CM, Lai HC, Huang SH, et. al. Promoter methylation of sFRP5 in patients with ovarian clear cell adenocarcinoma. Eur J Clin Invest. 2010 Apr;40(4):310-8.

52/Yamaguchi K, Mandai M, Oura T, et. al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes.  Oncogene. 2010 Mar 25;29(12):1741-52. Epub 2010 Jan 11.

53/Yoshioka N, Suzuki N, Uekawa A, et. al. POU6F1 is the transcription factor that might be involved in cell proliferation of clear cell adenocarcinoma of the ovary. Hum Cell. 2009 Nov;22(4):94-100.

54/Nagaraja AK, Creighton CJ, Yu Z, et. al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010 Feb;24(2):447-63. Epub 2010 Jan 15.

55/Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009;28:1653-68.

56/Huang J, Zhao YL, Li Y, et. al.  Genomic and functional evidence for an ARID1A tumor suppressor role.  Genes Chromosomes Cancer 2007;46:745-50.

57/Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results, by Paul Cacciatore, Libby’s H*O*P*E*™, August 3, 2010.

_________________________________

Sources:

_________________________________

Genetics 101

The information hyperlinked above was obtained from GeneticHealth & the BC Cancer Agency’s Michael Smith Genome Sciences Centre.

About David Huntsman, M.D., FRCPC, FCCMG

David Huntsman, M.D., FRCPC, FCCMG, is a world-renowned genetic pathologist, and the Co-Founder and Director of the Ovarian Cancer Research Program of British Columbia(OvCaRe). He also heads the Centre for Translational and Applied Genomics, located in the British Columbia (BC) Cancer Agency’s Vancouver Centre.  Dr. Huntsman is also the Co-Director of the Genetic Pathology Evaluation Centre, Vancouver General Hospital, and the Associate Director of the Hereditary Cancer Program, BC Cancer Agency. He is involved in a broad range of translational cancer research and, as the OvCaRe team leader, has studied the genetic and molecular structure of ovarian cancer for many years.

His recent retrospective assessment of 21 candidate tissue-based biomarkers implicated that ovarian cancer subtypes are different diseases, contributing to the view that contemplation of disease subtype is crucial to the study of ovarian cancer. To ultimately beat ovarian cancer, Huntsman and his dedicated OvCaRe team believe that ovarian cancer must be genetically tackled “one subtype at a time.”  In June 2009, the NEJM published one of Dr. Huntsman’s most recent groundbreaking discoveries:  the identification of  mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors.  As of today, Dr. Huntsman and his OvCaRe team can add to their groundbreaking discoveries, the identification of frequent ARID1A gene mutations in endometriosis-associated ovarian cancers (i.e., the clear-cell and endometrioid ovarian cancer subtypes).

About Marco Marra, Ph.D.

Marco Marra, Ph.D. is the Director of the BC Cancer Agency’s Michael Smith Genome Sciences Centre (GSC), one of eight BC Cancer Agency specialty laboratories. Dr. Marra is internationally recognized as a preeminent leader in the field of genetics.  His leadership has helped transform the GSC into one of the world’s most advanced and productive centers for development and application of genomics, bioinformatics and related technologies.

The work of the GSC , along with collaborations involving the BC Cancer Agency and other local, national and international researchers and organizations, have led to several major scientific breakthroughs over the past decade.  These breakthroughs include the rapid genome sequencing of the SARS Coronavirus, and the sequencing and genome analysis of the avian flu (H7N3).

About the Ovarian Cancer Research Program of British Columbia (OvCaRe)

The Ovarian Cancer Research Program of BC was formed in late 2000 when a group of Vancouver-based physicians and scientists joined with the common vision of enhancing ovarian cancer research in British Columbia and the explicit goal of improving outcomes for ovarian cancer patients. OvCaRe was developed as a collaboration between the BC Cancer Agency, the Vancouver Coastal Health Research Institute, and the University of British Columbia.  The OvCaRe program includes clinicians and research scientists from the Vancouver General Hospital (VGH) and the British Columbia (BC) Cancer Agency, who specialize in gynecology, pathology, and medical oncology.

OvCaRe is currently focused on three major goals.

1. To improve ovarian cancer survival through early detection of disease. OvCaRe researchers are working to identify proteins that are produced in the early stages of ovarian cancer. Detection of these proteins can then be developed into diagnostic tests to allow for earlier diagnosis of ovarian cancer.

2. To develop new therapies for ovarian cancer treatment. This is being achieved through research aimed at identifying the cause of ovarian cancer at the cellular level and then directly and specifically targeting that defect. OvCaRe is using a similar strategy to develop treatments to prevent ovarian cancer recurrence.

3. To develop individualized ovarian cancer treatments. Ovarian cancer can be subdivided into several groups based on their pathological appearance, however these groups are currently all treated in the same manner, though their responses are quite variable. OvCaRe is working to determine what is responsible for division between ovarian cancers subtypes and developing subtype specific treatments.

OvCaRe is funded through generous donations to the VGH & UBC Hospital Foundation and BC Cancer Foundation. The OvCaRe team is considered a leader in ovarian cancer research, breaking new ground to improve the identification, understanding, and treatment of this disease.

About the British Columbia (BC) Cancer Agency

The BC Cancer Agency provides a comprehensive province-wide, population-based cancer control program for the people of British Columbia, Canada, including prevention, screening and early detection programs, translational research and education, and care and treatment.

The BC Cancer Agency’s mandate covers the spectrum of cancer care, from prevention and screening, to diagnosis, treatment, and rehabilitation. The BC Cancer Agency’s mandate is driven by a three-fold mission: (1) reduce the incidence of cancer, (2)  reduce the mortality rate of people with cancer, and (3) improve the quality of life of people living with cancer. This mission includes providing screening, diagnosis and care, setting treatment standards, and conducting research into causes of, and cures for, cancer.

The BC Cancer Agency operates five regional cancer centres, providing assessment and diagnostic services, chemotherapy, radiation therapy, and supportive care.  Each of the BC Cancer Agency’s centres delivers cancer treatment based on provincial standards and guidelines established by the Agency.

Research is an essential part of the BC Cancer Agency’s mission to not only find the causes of cancer, but to find better treatments for prolonged life and better quality of life. With direct links between the BC Cancer Agency’s physicians and researchers at its five centres (including the Deeley Research Centre (located in Victoria) and the BC Cancer Agency’s Research Centre (located in Vancouver)), the BC Cancer Agency can quickly translate new discoveries into clinical applications. The BC Cancer Agency’s Research Centre includes eight specialty laboratories including the Michael Smith Genome Sciences Centre, and the Terry Fox Laboratory.

The BC Cancer Agency includes the following among its many accomplishments:

  • Canada’s largest fully integrated cancer and research treatment organization;
  • the best cancer incidence and survival rates in Canada as a result of the unique and longstanding population-based cancer control system;
  • leadership in cancer control with world-renowned programs in lymphoid, lung, breast, ovarian and oral cancer research and care; and
  • a unique set of research platforms that form the basis of research and care, including one of the world’s top four genome sciences centres.

About the Vancouver General Hospital (VGH)

The Vancouver General Hospital (VGH) is a 955 bed hospital that offers specialized services to residents in Vancouver and across the province.  VGH is also a teaching hospital, affiliated with the University of British Columbia and home to one of the largest research institutes in Canada.

About the British Columbia (BC) Cancer Foundation

The BC Cancer Foundation is an independent charitable organization that raises funds to support breakthrough cancer research and care at the BC Cancer Agency.

Over 70 years ago, the BC Cancer Foundation, led by a group of prominent BC citizens, created what is today the BC Cancer Agency. The Foundation has offices in all five of the BC Cancer’s Agency’s treatment centres – Abbotsford, Fraser Valley, Southern Interior, Vancouver Island and Vancouver.

About the Vancouver General Hospital (VGH) & University of British Columbia (UBC) Hospital Foundation

The VGH & UBC Hospital Foundation is a registered charity that raises funding for the latest, most sophisticated medical equipment, world-class research and improvements to patient care for VGH, UBC Hospital, GF Strong Rehab Centre and Vancouver Coastal Health Research Institute. For more than 25 years, the Foundation and its donors have been a bridge between the essential health care governments provide and the most advanced health care possible.


U.S. President Barack Obama Proclaims September 2010 As National Ovarian Cancer Awareness Month

Yesterday, U.S. President Barack Obama designated September 2010 as National Ovarian Cancer Awareness Month.  During National Ovarian Cancer Awareness Month, we honor all those lost to and living with ovarian cancer, and we renew our commitment to developing effective screening methods, improving treatments, and ultimately defeating this disease.

The White House

Office of the Press Secretary

For Immediate Release August 31, 2010

Presidential Proclamation–National Ovarian Cancer Awareness Month

While we have made great strides in the battle against ovarian cancer, this disease continues to claim more lives than any other gynecologic cancer. During National Ovarian Cancer Awareness Month, we honor all those lost to and living with ovarian cancer, and we renew our commitment to developing effective screening methods, improving treatments, and ultimately defeating this disease.

Each year, thousands of women are diagnosed with, and go on to battle valiantly against, this disease. Yet, ovarian cancer remains difficult to detect, and women are often not diagnosed until the disease has reached an advanced stage. I encourage all women — especially those with a family history of ovarian cancer or breast cancer, and those over age 55 — to protect their health by understanding risk factors and discussing possible symptoms, including abdominal pain, with their health care provider. Women and their loved ones may also visit Cancer.gov for more information about the symptoms, diagnosis, and treatment of ovarian and other cancers.

Across the Federal Government, we are working to promote awareness of ovarian cancer and advance its diagnosis and treatment. The National Cancer Institute, the Centers for Disease Control and Prevention, and the Department of Defense all play vital roles in reducing the burden of this illness through critical investments in research. Earlier this year, I was proud to sign into law the landmark Affordable Care Act (ACA), which includes provisions to help women living with ovarian cancer. The ACA eliminates annual and lifetime limits on benefits, creates a program for those who have been denied health insurance because of a pre-existing condition, and prohibits insurance companies from canceling coverage after individuals get sick. The ACA also requires that women enrolling in new insurance plans and those covered by Medicare or Medicaid receive free preventive care — including women’s health services and counseling related to certain genetic screenings that identify increased risks for ovarian cancer. In addition, the ACA prohibits new health plans from dropping coverage if an individual chooses to participate in a potentially life-saving clinical trial, or from denying coverage for routine care simply because an individual is enrolled in such a trial.

During National Ovarian Cancer Awareness Month and throughout the year, I commend all the brave women fighting this disease, their families and friends, and the health care providers, researchers, and advocates working to reduce this disease’s impact on our Nation. Together, we can improve the lives of all those affected and create a healthier future for all our citizens.

NOW, THEREFORE, I, BARACK OBAMA, President of the United States of America, by virtue of the authority vested in me by the Constitution and the laws of the United States, do hereby proclaim September 2010 as National Ovarian Cancer Awareness Month. I call upon citizens, government agencies, organizations, health care providers, and research institutions to raise ovarian cancer awareness and continue helping Americans live longer, healthier lives.

IN WITNESS WHEREOF, I have hereunto set my hand this thirty-first day of August, in the year of our Lord two thousand ten, and of the Independence of the United States of America the two hundred and thirty-fifth.

BARACK OBAMA

Source: NATIONAL OVARIAN CANCER AWARENESS MONTH, 2010, By the President of the United States of America, A Proclamation, Office of the Press Secretary For The President of the United States of America, The White House, August 31, 2010.

ASCO Releases Studies From Upcoming 2010 Annual Meeting

Yesterday, the American Society of Clinical Oncology (ASCO) made available more than 4,000 medical abstracts which are publicly posted online at http://www.abstract.asco.org. A hyperlink to the 2010 ASCO Annual Meeting ovarian cancer abstracts is provided below.  The ASCO Annual Meeting will be held June 4-8, 2010 at McCormick Place in Chicago, Illinois.

The 2010 ASCO Annual Meeting will be held June 4-8, 2010 at McCormick Place in Chicago, Illinois.

Yesterday, the American Society of Clinical Oncology (ASCO) highlighted six studies in a press briefing from among more than 4,000 abstracts publicly posted online at www.abstract.asco.org in advance of ASCO’s 46th Annual Meeting.  An additional 14 plenary, late-breaking and other major studies will be released at the Annual Meeting and highlighted in on-site press conferences.

The meeting, which is expected to draw approximately 30,000 cancer specialists, will be held June 4-June 8, 2010, at McCormick Place in Chicago, Illinois. The theme of this year’s meeting is “Advancing Quality Through Innovation.”

“Our growing understanding of cancer’s complex behavior is being translated into better, more targeted drugs against a variety of tumors,” said Douglas W. Blayney, MD, President of ASCO, professor of internal medicine at the University of Michigan Medical School and medical director of the Comprehensive Cancer Center at the University of Michigan. “These studies show that investment in cancer research pays off. We’re developing more personalized approaches to treating patients of all ages and across all cancer types, we’re learning how to use current treatments more effectively, and we’re identifying new ways to help patients live long, healthy lives following treatment.”

“Clinical trials are essential to continued progress against cancer. Yet, the nation’s federally funded clinical trial system is at a breaking point,” said George W. Sledge Jr, MD, ASCO President-Elect, Ballve-Lantero Professor of Oncology and professor of pathology and laboratory medicine at the Indiana University School of Medicine. “ASCO has called for a doubling of support for federally funded clinical cancer research within the next five years. We’ve made impressive strides against this disease, and it’s vital that the nation put more resources into these programs to continue the momentum.

Relevant studies highlighted in the May 20th press briefing include:

  • Promising New Ovarian Cancer Screening Strategy Developed for Post-Menopausal Women at Average Risk: A promising new screening approach for post-menopausal women at average risk of ovarian cancer is feasible and produces very few false-positive results. The method uses a mathematical model combining trends in CA-125 blood test results and a patient’s age, followed by transvaginal ultrasound and referral to a gynecologic oncologist, if necessary.
  • Yoga Improves Sleep and Quality of Life, Lessens Fatigue for Cancer Survivors: Sleep problems and fatigue are among the most common side effects experienced by cancer survivors. A four-week yoga program involving breathing, meditation, postures and other techniques helped cancer survivors sleep better, reduced fatigue and the use of sleep aids, and improved their quality of life.

If you are interested in reviewing the medical abstract subject listing, CLICK HERE.

If you are interested in reviewing the ovarian cancer medical abstracts, CLICK HERE.

Source: ASCO Releases Studies From Upcoming Annual Meeting — – Important Advances in Targeted Therapies, Screening, and Quality of Life, News Release, American Society of Clinical Oncology, May 20, 2010. For a complete PDF copy of the ASCO May 20, 2010 press release, CLICK HERE.

Princeton Scientists Find Way To Catalog All That Goes Wrong In A Cancer Cell

A team of Princeton University scientists has produced a systematic listing of the ways a particular cancerous cell has “gone wrong,” giving researchers a powerful tool that eventually could make possible new, more targeted therapies for patients.

A team of Princeton University scientists has produced a systematic listing of the ways a particular cancerous cell has “gone wrong,” giving researchers a powerful tool that eventually could make possible new, more targeted therapies for patients.

Saeed Tavazoie is a professor in the Princeton University Department of Molecular Biology & the Lewis-Sigler Institute for Integrative Genomics

“For a very long time, cancer therapies have been developed by trial and error to essentially kill a broad variety of rapidly dividing cells, good and bad — that’s why they have massive side effects,” said Saeed Tavazoie, a professor in the Department of Molecular Biology and the Lewis-Sigler Institute for Integrative Genomics, who led the research. “The goal of cancer biology is to come up with therapies that are much more rational in terms of attacking the pathways that have been co-opted by cancer cells. The big challenge is to discover these pathways so that we can restore them to their normal state.”

Writing in the Dec. 11 issue of Molecular Cell, Tavazoie, along with his colleagues Hani Goodarzi, a graduate student in molecular biology, and Olivier Elemento, a former postdoctoral researcher in the department, found they were able to systematically categorize and pinpoint the alterations in cancer pathways and to reveal the underlying regulatory code in DNA. Elemento is now on the faculty of Weill Cornell Medical College in New York.

“We are discovering that there are many components inside the cell that can get mutated and give rise to cancer,” Tavazoie said. “Future cancer therapies have to take into account these specific pathways that have been mutated in individual cancers and treat patients specifically for that.”

The researchers developed an algorithm, a problem-solving computer program that sorts through the behavior of each of 20,000 genes operating in a tumor cell. When genes are turned “on,” they activate or “expressproteins that serve as signals, creating different pathways of action. Cancer cells often act in aberrant ways, and the algorithm can detect these subtle changes and track all of them.

“At the present moment, we lump a lot of cancers together and use the same therapy,” Tavazoie said. “In the future, we are aiming to be much more precise about treating the exact processes that were perturbed by the mutations.”

Pathologists presently examining the tumors of sick patients analyze a small set of tumor characteristics in order to determine the diagnostic and prognostic class to which the cells belong. This new method could give practitioners an encyclopedic accounting of the alterations in problem cells, spelling out the nature of the disease in much greater detail.

The algorithm devised by the group scans the DNA sequence of a given cell — its genome — and deciphers which sequences are controlling what pathways and whether any are acting differently from the norm. By deciphering the patterns, the scientists can conjure up the genetic regulatory code that is underlying a particular cancer.

The scientists developed the technique by employing modern methods of systems biology, where researchers seek to understand how components of living systems like cells work together to orchestrate processes, using powerful computers to sort vast arrays of data.

“Part of the promise of genomics and systems biology is the discovery of specific pathways of disease and finding ways to target them precisely,” Tavazoie said. “We have focused on revealing what these pathways are.”

The challenge for others, he said, will be to design specific therapies for such diseases, a process that could take many years. “This is an important first step,” Tavazoie added.

The method ultimately could work for any type of cancer and paves the way for rational approaches to treating a host of other diseases from diabetes to neurological disorders, the scientists said.

The research was funded by the National Human Genome Research Institute of the National Institutes of Health.

Sources:

“Decisions Are Made By Those Who Show Up”*

Responding to a threat of a funding reduction to the Department of Defense’s Ovarian Cancer Research Program, during the last week of October the Ovarian Cancer National Alliance urged advocates to contact their Members of Congress to appeal to the Appropriations Defense Subcommittee to increase funding for the research program. As a result of the Ovarian Cancer National Alliance’s advocacy efforts, 14 Senators and 77 Representatives showed their opposition to the funding cut by signing a Dear Colleague letter sent to the Subcommittee Tuesday, November 3, 2009. …

Advocates Work To Prevent Slash In Ovarian Cancer Research Funding

Responding to a threat of a funding reduction to the Department of Defense’s Ovarian Cancer Research Program, during the last week of October the Ovarian Cancer National Alliance (OCNA) urged advocates to contact their Members of Congress to appeal to the Appropriations Defense Subcommittee to increase funding for the research program.

OCNAadvocates1

Advocates lobbying on Capitol Hill for increased funds for ovarian cancer research. (Photo: Ovarian Cancer National Alliance)

As a result of OCNA’s advocacy efforts, 14 Senators and 77 Representatives showed their opposition to the funding cut by signing a Dear Colleague letter sent to the Subcommittee Tuesday, November 3, 2009.

The Dear Colleague letter, written by Senator Robert Menendez (D-NJ) and Congresswoman Rosa DeLauro (D-CT), requested that the Subcommittee allocate the $25 million set forth in the U.S. House of Representatives‘ version of the Defense bill, and not the $10 million outlined in the U.S. Senate version of the bill. The Senate funding level represented a 50 percent reduction from the $20 million appropriated in fiscal year (FY) 2009.

The date of the conference subcommittee meeting has yet to be announced.

Established in 1997, the Department of Defense’s Ovarian Cancer Research Program has received $10 million in funding annually from FY 1998 until FY 2008. However, for FY 2009, the program’s funding was doubled to $20 million. The Ovarian Cancer Research Program works to eliminate ovarian cancer by conducting innovative, multidisciplinary research on early detection, screening and treatment of ovarian cancer.

To read the full text of the letter and see if your elected officials signed, please click here.

The Ovarian Cancer Action Network periodically sends out action alerts to notify advocates of pressing issues that need constituent support. To sign up, please click here.

About the Ovarian Cancer National Alliance

OCNA is the advocacy arm of the ovarian cancer movement. OCNA works with federal policy makers, including the  U.S. President, U.S. Congress, and federal agencies like the U.S. Food and Drug Administration (FDA) and the Centers for Medicare and Medicaid Services (CMS). OCNA commits its resources to be a voice for ovarian cancer survivors and significantly reduce the number of deaths from this deadly disease by advocating at the federal level for the following:

• Adequate and sustained funding for ovarian cancer research and awareness programs, and

• Legislation that improves quality of life and access to care for ovarian cancer patients.

Since 1997, when OCNA was founded, death rates from ovarian cancer have not significantly changed. However, OCNA has worked to increase funding for ovarian cancer research, with the goal that this funding will support breakthroughs to help detect ovarian cancer early, treat it more thoroughly, and allow women with ovarian cancer to survive, and thrive.

OCNA has worked to ensure that (i) necessary treatments are covered by Medicare, (ii) drugs and tests on the market are safe and effective, and (iii) federal policy makers are aware of the importance of the ovarian cancer community.

Join OCNA to fight for women with ovarian cancer, and policies that help support them and their families.

Source: Advocates Work To Prevent Slash In Ovarian Cancer Research Funding, News Update, Ovarian Cancer National Alliance, November 11, 2009.

*Title Quote:  Fictional U.S. President Josiah Edward Bartlet, What Kind of Day Has It Been Episode, The West Wing, created by Aaron Sorkin, originally aired May 17, 2000 [Sorkin attributes his teleplay quote to Woody Allen (“80% of success in life is just showing up”)].

Nationwide Registry to “Match” Study Volunteers With Researchers

Individuals who want to participate in research studies can connect online with researchers nationwide through the first disease-neutral, volunteer recruitment registry.  ResearchMatch.org is a not-for-profit secure Web site, designed to provide people who are interested in participating in research the opportunity to be matched with studies that may be the right fit for them.

NIH Announces First National Research Study Recruitment Registry

Nationwide Registry to “Match” Volunteers with Researchers

Barbara Alving, M.D.

Barbara Alving, M.D., Director, National Center For Research Resources. "ResearchMatch is a tool that can improve the connection and communication between potential participants and researchers providing opportunities for the public to contribute to advancing new treatments."

researchmatch.orgIndividuals who want to participate in research studies now can connect online with researchers nationwide through the first disease-neutral, volunteer recruitment registry.

ResearchMatch.org is a not-for-profit secure Web site, designed to provide people who are interested in participating in research the opportunity to be matched with studies that may be the right fit for them.

ResearchMatch offers an easy-to-use, free and safe way for volunteers to connect with thousands of researchers who are conducting research on a wide range of diseases.

The site is a collaborative effort of the national network of medical research institutions affiliated with the Clinical and Translational Science Awards (CTSAs). The CTSA program, which is led by the National Center for Research Resources (NCRR), a part of the National Institutes of Health, is focused on enhancing local and national efforts to enhance the translation of laboratory discoveries into treatments for patients.

“‘Participant recruitment continues to be a significant barrier to the completion of research studies nationwide — recent NIH data indicates that just 4 percent of the U.S. population has participated in clinical trials,’ said NCRR Director Barbara Alving, M.D.”

“Participant recruitment continues to be a significant barrier to the completion of research studies nationwide — recent NIH data indicates that just 4 percent of the U.S. population has participated in clinical trials,” said NCRR Director Barbara Alving, M.D. “ResearchMatch is a tool that can improve the connection and communication between potential participants and researchers providing opportunities for the public to contribute to advancing new treatments.”

” …One key difference is that ResearchMatch places the burden of connecting the right volunteers with the right study on the researchers, whereas Clinicaltrials.gov asks volunteers to identify the trials that could work for them. …”

The convenient and user-friendly registry employs a familiar research matching model that is complementary to Clinicaltrials.gov. One key difference is that ResearchMatch places the burden of connecting the right volunteers with the right study on the researchers, whereas Clinicaltrials.gov asks volunteers to identify the trials that could work for them.

“NIH data indicates that 85 percent of trials don’t finish on time due to low patient participation, and 30 percent of trial sites fail to enroll even a single patient. We aim to help combat these challenges with ResearchMatch.” — Gordeon Bernard, M.D., principal investigator of the Vanderbilt University CTSA

“ResearchMatch offers a convenient solution to the complex, competitive and often costly participant recruitment system,” said Gordon Bernard, M.D., principal investigator of the Vanderbilt CTSA, which hosts the national registry. “NIH data indicates that 85 percent of trials don’t finish on time due to low patient participation, and 30 percent of trial sites fail to enroll even a single patient. We aim to help combat these challenges with ResearchMatch.”

How ResearchMatch Works

ResearchMatch will match any interested individual residing in the United States with researchers who are approved to recruit potential research volunteers through the system. After an individual has self-registered to become a volunteer, researchMatch’s security features ensure that personal information is protected until volunteers authorize the release of their contact information to a specific study that may be of interest to them. Volunteers are notified electronically when they are a possible match and then make the decision regarding the release of their contact information. It also will promote choice as there are no obligations on the volunteer to participate in studies.

For the first year of the project, only researchers affiliated with participating CTSA institutions are eligible to use researchMatch. However, plans are in place to make researchMatch available beyond the CTSA consortium by 2011. Currently 52 individual institutions associated with 40 CTSA sites are part of the ResearchMatch network. A list of these institutions may be viewed here (http://ncrr.nih.gov/clinical_research_resources/clinical_and_translational_science_awards/researchmatch).

To learn more about researchMatch and to register as a volunteer, visit: www.researchmatch.org.

About the CTSA Consortium

The CTSA consortium is a national network of 46 medical research institutions working together to improve the way biomedical research is conducted across the country. The consortium, funded through Clinical and Translational Science Awards (CTSAs), shares a common vision to reduce the time it takes for laboratory discoveries to become treatments for patients and to engage communities in clinical research efforts. It also is fulfilling the critical need to train a new generation of clinical researchers. The CTSA program is led by the National Center for Research Resources, part of National Institutes of Health.

Launched in 2006, this network now includes awardees in 26 states. When the program is fully implemented, it will support approximately 60 CTSAs across the nation.

For more information about the CTSA program, visit www.ncrr.nih.gov/ctsa. The CTSA consortium Web site, which provides information on the consortium, current members and new grantees, can be accessed at www.CTSAweb.org.

About the National Center For Research Resources

The National Center for Research Resources, part of NIH, provides laboratory scientists and clinical researchers with the resources and training they need to understand, detect, treat and prevent a wide range of diseases. NCRR supports all aspects of translational and clinical research, connecting researchers, patients and communities across the nation. For more information, visit www.ncrr.nih.gov.

About the National Institutes of Health

The National Institutes of Health (NIH) — The Nation’s Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SourceNIH Announces First National Research Study Recruitment Registry – Nationwide Registry to “Match” Volunteers with Researchers, NIH News, U.S. National Institutes of Health, U.S. Department of Health & Human Services, November 10, 2009.

To Fight Cancer, Know The Enemy

An Op-Ed entitled “To Fight Cancer, Know the Enemy” was published in The New York Times on August 6, 2009.  The author of the Op-Ed was James D. Watson, Ph.D.  James Watson co-discovered the DNA double helix structure; a discovery for which he received the 1962 Nobel Prize for Physiology or Medicine. In the article, Watson states his belief that beating cancer is now a realistic ambition, and he makes several suggestions designed to ensure that victory.

On August 6, 2009, an Op-Ed entitled To Fight Cancer, Know the Enemy was published in The New York Times (NYT).  The author of the article was James D. Watson, Ph.D. James Watson co-discovered the DNA double helix structure; a discovery for which he received the 1962 Nobel Prize for Physiology or Medicine.  Dr. Watson is the Chancellor Emeritus of Cold Spring Harbor Laboratory, and is generally considered the father of molecular biology. Throughout most of his career, James Watson’s novel scientific ideas generated great controversy among, and resistance from, many members of the scientific community.  The suggestions posed by James Watson in his August 6th NYT Op-Ed are likely no exception.

Watson begins the Op-Ed by suggesting an ambitious, yet optimistic, goal in the area of cancer research:

“The National Cancer Institute, which has overseen American efforts on researching and combating cancers since 1971, should take on an ambitious new goal for the next decade:  the development of new drugs that will provide lifelong cures for many, if not all, major cancers.  Beating cancer now is a realistic ambition because, at long last, we largely know its true genetic and chemical characteristics. …”

James D. Watson

James D. Watson, Ph.D. is the Chancellor Emeritus of the world-renowned Cold Spring Harbor Laboratory. Dr. Watson co-discovered DNA's double helix structure; a discovery for which he received the 1962 Nobel Prize for Physiology or Medicine. In an Op-Ed published in the New York Times on August 6, 2009, Dr. Watson states: "...Beating cancer now is a realistic ambition because, at long last, we largely know its true genetic and chemical characteristics."

Despite President Nixon’s declaration of  war on cancer in 1971, Watson states that the goal of “beating cancer” was not possible prior to the year 2000, because researchers did not possess the necessary scientific understanding of cancer molecular biology. Extensive details about specific cancers only became known after the 2003 completion of the Human Genome Project, says Watson. Researchers have identified most of the major cellular pathways through which cancer-inducing signals move through cells, and Watson notes that 20 or so signal-blocking drugs are in human clinical testing. By way of example, Watson highlights the breast cancer drug Herceptin, which is used to fight an aggressive form of breast cancer. Herceptin was approved initially by the U.S. Food & Drug Administration (FDA) in 1998, and today represents the standard of care in treating so-called “HER-2 positive” breast cancer.

With this scientific background, Dr. Watson outlines several suggested changes to the current U.S. cancer research paradigm. He believes that the various changes listed below will give the nation a fighting chance to win the war on cancer.

Change FDA Regulations To Allow Combination Testing of New Cancer Drugs Which Are Ineffective As Monotherapies.

Noting the lack of new cancer drugs that lead to lifelong cures, Watson explains that there are many types of cancer-causing “genetic drivers” within a single cancer cell. Although an analysis of several cancer genetic drivers may allow a doctor to prescribe more personalized chemotherapy treatments for the patient, Watson believes that use of drugs against one genetic cancer driver would simply lead to the emergence of increasingly destructive second and third drivers due to the inherent genetic instability of cancer cells.  Accordingly, Watson concludes that most anticancer drugs will not reach their full potential unless they are given in combination to shut down multiple cancer genetic drivers within a cancer cell simultaneously.

Dr. Watson, however, is quick to note that current FDA regulations effectively prohibit combination testing of new cancer drugs that, when administered alone, prove ineffective.  Thus, Watson concludes that current FDA regulations must be amended to allow combination testing of new cancer drugs that prove ineffective as monotherapies.

Better Understand The Chemical (Rather Than Genetic) Makeup of Cancer Cells

Dr. Watson believes that researchers should shift the current focus of cancer research away from decoding the genetic characteristics of cancer, and obtain a better understanding of the chemical reactions that occur within cancer cells. This suggestion, Watson explains, is based upon a 1924 discovery made by the German biochemist (and 1931 Nobel Laureate) Otto Warburg.  During experimentation, Warburg observed that cancer cells, irrespective of whether they grow in the presence or absence of oxygen, produce large amounts of lactic acid. Approximately one year ago, the significance of Warburg’s observation was revealed, says Watson. The metabolism of all proliferating cells (including cancer cells) is largely directed toward the synthesis of cellular building blocks from the breakdown of glucose. Based upon this recent discovery, Dr. Watson concludes that glucose breakdown runs faster in growing cells then in differentiated cells (i.e., cells that stop growing and perform specialized functions within the body).

The turbocharged breakdown of glucose in growing cells is attributable to growth-promoting signal molecules that effectively turn up the levels of transporter proteins which move glucose molecules into the cell, explains Watson. With this important discovery in hand, Watson suggests that researchers determine whether new drugs that specifically inhibit the key enzymes involved in the breakdown of glucose can produce an anticancer effect. Because this determination requires a better understanding of the chemical makeup of cancer cells, Watson believes that biochemists (rather than molecular biologists) will again move to the forefront of cancer research.

NCI Should Fund Smaller Biotechnology Companies & Increase Its Funding to Major Research-Oriented Cancer Centers

The next issue addressed by Dr. Watson relates to the lack of funding available to small biotechnology companies, which are generally engaged in highly innovative research. In the past, the requisite funding of these companies was provided by venture capitalists (VCs), Watson notes.  The level of VC funding required by small biotech companies is not currently available due to the severe U.S. economic downturn. To resolve this critical capital funding issue, Watson suggests that the National Cancer Institute (NCI) fund small biotech companies. This action, Watson believes, will allow the biotech companies to move drug discoveries from the laboratory into human clinical testing on an accelerated basis. In tandem with funding small biotech companies, Dr. Watson also requests NCI to increase its funding to major research-oriented cancer centers that engage in “low probability-high payoff” research projects, which are generally turned down by large pharmaceutical and biotech companies.

President Obama Should Appoint A Strong Leader To The Directorship of NCI

In 1971, the U.S. Congress provided the president, rather than the head of the National Institutes of Health, with the authority to appoint the NCI director.  Watson characterizes NCI in his Op-Ed as “an outpost of the White House” that has “… become a largely rudderless ship in dire need of a bold captain who will settle only for total victory.”  To resolve this issue, Dr. Watson advises President Barack Obama to appoint a strong leader, from among the nation’s best cancer researchers, to the directorship of NCI.  As part of this new leadership structure, Watson also recommends that NCI recruit a seasoned pharmaceutical developer who can radically increase the speed of anticancer drug development and human clinical testing.

Application Of Sun Tzu’s Strategies On The Art Of War To Cancer Research

Sun Tzu

A statue of the iconic Chinese military leader Sun Tzu. Sun Tzu wrote the earliest -- and still the most revered -- military treatise in the world. This 6th century BC masterpiece is best known to most of us as "The Art of War."

At the conclusion of his Op-Ed, Watson acknowledges that his views will provoke rebuttals from prominent scientists who believe that it is not the right time to wage war on cancer. Moreover, Watson anticipates that many scientists will recommend that, until victory is more certain, the U.S. should not expend large sums of money on cancer research. Watson admits that money alone will not win the war on cancer, but he emphasizes that victory over cancer will not come ” from biding our time.” As part of the Op-Ed title, Watson uses the phrase “know the enemy;” a phrase commonly attributed to the ancient Chinese military leader Sun Tzu. Sun Tzu wrote the earliest — and still the most revered — military treatise in the world.  This 6th century BC masterpiece is best known to most of us as The Art of War.  The clever use of the phrase “know the enemy” by Dr. Watson may suggest that the enemy is indeed cancer, and perhaps, ourselves as represented by the current U.S. cancer research paradigm.

In chapter III of The Art of War, entitled Attack by Stratagem, Sun Tzu describes the dual knowledge that one must possess to achieve ultimate victory in war:

“…If you know the enemy and know yourself, you need not fear the result of a hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every battle. …”

To follow the advice of James Watson is to better know ourselves and the formidable enemy known as “cancer.” Will Watson’s advice allow us to achieve ultimate victory in the war on cancer? Perhaps. Only time (and appropriate research funding) will tell.

Source: To Fight Cancer, Know The Enemy, by James D. Watson, Op-Ed, The New York Times, August 6, 2009.