World Ovarian Cancer Day: Together We’re Stronger

Each year, nearly a quarter of a million women around the world are diagnosed with ovarian cancer and the disease is responsible for 140,000 deaths annually. Statistics show that just 45% of women with ovarian cancer are likely to survive for five years compared with 89% of women with breast cancer. We ask that you join us on World Ovarian Cancer Day (May 8th) in the fight against the most lethal form of gynecologic cancer.

WOCD.05.08.14

LEARN: World Ovarian Cancer Day — May 8, 2015

On May 8, 2015, the individuals from around the world are invited to join the global movement to raise awareness about ovarian cancer. This year the theme will celebrate the natural bond women have with each other, encouraging people to send in photos of celebratory bonding moments and to sign the awareness pledge located on the website (www.ovariancancerday.org) to spread the word about ovarian cancer for the third annual World Ovarian Cancer Day (WOCD).

Dr. Maya Soetoro-Ng, President Obama’s sister, speaks out about losing her mother to ovarian cancer.

“Now in its third year, World Ovarian Cancer Day has grown globally to over 78 organizations from 25 countries,” says Elisabeth Baugh, chair of the WOCD international organizing committee and CEO of Ovarian Cancer Canada. “In celebrating the unique bonds of women, we are acknowledging the strong drive they have to share and help each other. Without women, the world would not be. Joining together, our common voice symbolizes a global support group for the 250,000 women who will be diagnosed this year with ovarian cancer.”

Celebrate the women you love, trust, and are proud to know by helping to raise awareness about ovarian cancer and view a video of celebratory images to be released globally on May 8, World Ovarian Cancer Day.

“Our outreach has demonstrated the ability of this campaign to increase awareness of the disease and to connect people internationally with the resources available to educate others,” explained members of the Steering Committee, Calaneet Balas, CEO of the Ovarian Cancer National Alliance, Annwen Jones, Target Ovarian Cancer and Alison Amos, Ovarian Cancer Australia. “This year we want to put faces to that movement – faces of women who care about and support each other.”

In 2015, not only cancer organizations, but all interested groups who care about the health of women internationally are invited to register and partner with us. The pledge also engages individuals worldwide, empowering them with information about ovarian cancer and a quick and easy way to pass on the word about the disease.

All those who sign the World Ovarian Cancer Day pledge at www.ovariancancerday.org will receive an e-card on May 8 with ovarian cancer risk and symptom information. This card is to be passed along to at least five friends, who in turn will be encouraged to pass it along to their friends.

Each year, nearly a quarter of a million women around the world are diagnosed with ovarian cancer and the disease is responsible for 140,000 deaths annually. Statistics show that just 45% of women with ovarian cancer are likely to survive for five years compared with 89% of women with breast cancer. Women in developed and developing countries are similarly affected by ovarian cancer.

The recent disclosure by Angelina Jolie Pitt in a New York Times Op-Ed about prophylactic surgery to remove her fallopian tubes and ovaries because of a genetic predisposition for ovarian and breast cancer has put knowledge about your family history in the spotlight. Approximately 15%- 20% of cases of ovarian cancer are due to family history. This means having a close blood relation (mother, sister, daughter, grandmother, granddaughter, aunt or niece) on either your mother’s or your father’s side of the family who has had breast cancer before the age of 50 or ovarian cancer at any age.

In addition to sharing symptom and risk information, WOCD will also focus on prevention of ovarian cancer.

WOCD’s social media campaign includes the WOCD website (available in 4 languages: English, French, Portuguese and Spanish), Facebook, Twitter, YouTube and Pinterest. Activities in 2014 were highlighted in photos and through the pledge dissemination which reached over 15,000 people. This will continue to grow on May 8, including “lighting the world in teal” – the color that represents ovarian cancer.

World Ovarian Cancer Day has become a global movement in three short years. Uniting patient organizations globally, it has also sparked interest and involvement from healthcare professionals in countries around the world. This year, we celebrate the voice of women in making a difference as we unite and speak with one voice to raise awareness of ovarian cancer. Globally, rejoicing on our unique bond, we will ensure that no woman with ovarian cancer walks alone.

Please join us by signing the pledge form.

WOCDLate_Diagnosis_large1-980x600

EDUCATE: Ovarian Cancer Facts:

Libby’s H*O*P*E* is dedicated to my 26-year old cousin, Elizabeth “Libby” Remick, who died from ovarian cancer in July 2008. Our mission is to educate ovarian cancer survivors and their families, as well as the general public, about ovarian cancer under the principle that “information is power.” The key to a significant reduction in deaths from ovarian cancer is early detection. Early detection is best achieved by having women listen to their bodies for the subtle, yet persistent, early warning signs & symptoms of the disease as described below. Together, we can raise money for a reliable early detection test, and ultimately a cure, for ovarian cancer.

Please take time to educate yourself with respect to the important ovarian cancer awareness facts provided below.

— Overview: Ovarian cancer causes more deaths than any other cancer of the female reproductive system. It is the fifth leading cancer cause of death among U.S. women.

By the Numbers: In 2015, the American Cancer Society (ACS) estimates that there will be approximately 21,290 new ovarian cancer cases diagnosed in the U.S. ACS estimates that 14,180 U.S. women will die from the disease, or about 38 women per day. The loss of life is equivalent to 28 Boeing 747 jumbo jet crashes with no survivors every year.

Early Warning Signs: Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that some women may experience persistent, nonspecific symptoms, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation.

Who’s Affected: Ovarian cancer can afflict adolescent, young adult, and mature women.

Risk Reduction: Pregnancy, the long-term use of oral contraceptives, and tubal ligation reduce the risk of developing ovarian cancer. Recent research suggests that the most common form of ovarian cancer actually starts in the fallopian tubes. Any woman who is about to undergo gynecologic surgery may wish to discuss with her surgeon the possibility of having her fallopian tubes removed at that time.

Importance of Family History: Women who have had breast cancer, or who have a paternal or maternal family history of breast cancer or ovarian cancer may have increased risk. Inherited mutations in BRCA1/BRCA2 genes increase risk. Women of Ashkenazi (Eastern European) Jewish ancestry are at higher risk for BRCA gene mutations. The incidence of ovarian ovarian cancer among Ashkenazi Jewish women is 1-in-40 versus 1-in-72 in the general population. Studies indicate that preventive surgery to remove the ovaries and fallopian tubes in women who possess a BRCA gene mutation decreases the risk of ovarian cancer.

Genetic Couseling: If a woman has a family history of breast or ovarian cancer as described above, she may wish to seek genetic counselling. In fact, there is a recent shift in thinking that any woman with ovarian cancer should also seek genetic counselling as an important step for herself and other members of her family.

Other Risk Factors: Other medical conditions associated with an increased ovarian cancer risk include pelvic inflammatory disease and Lynch syndrome. The use of hormonal replacement therapy has been shown to increase ovarian cancer risk. Tobacco smoking increases the risk of mucinous epithelial ovarian cancer. Heavier body weight may be associated with increased risk of ovarian cancer.

Lack of a Reliable Early Screening Test: There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear is used to detect cervical cancer, not ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed described above.

Prognosis: If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 15% of all cases are detected at this stage, usually fortuitously during another medical procedure. The majority of cases (61%) are diagnosed at a distant stage, for which the 5-year survival rate is 27%.

Survival Statistics: The 5-year and 10-year relative survival rates for all disease stages combined are only 45% and 35%, respectively. However, survival varies substantially by age; women younger than 65 are twice as likely to survive 5 years as women 65 and older (58% versus 27%).

Please help us to (i) spread the word about the early warning signs & symptoms of ovarian cancer, and (ii) raise money for ovarian cancer research. The life you save may be your own or that of a loved one.

FIGHT: The “Holy Trinity” of Major U.S. Ovarian Cancer Organizations

There are three major U.S. ovarian cancer organizations that are working to increase ovarian cancer awareness, and/or raise money to fight the disease. They are listed below. Please consider making a donation to one or more of these critically important nonprofit organizations.

  • Ovarian Cancer Research Fund

The Ovarian Cancer Research Fund (OCRF) is the largest independent organization in the U.S. that is dedicated exclusively to funding ovarian cancer research– and to finding a cure. Through its three research programs, OCRF funds many of the best researchers and the most innovative projects.

Since 1998, OCRF has awarded 63 leading medical centers 195 grants for ovarian cancer research: an investment totaling over $50 million. OCRF researchers are taking on ovarian cancer from many angles:

— Developing innovative strategies for early detection;

— Discovering genetic polymorphisms that increase risk for ovarian cancer;

— Understanding the underlying genetics and molecular biology of ovarian cancer;

— Identifying new, better targets for treatment;

— Determining how to super-charge a woman’s immune response to better fight ovarian cancer; and

— Deciphering how and why ovarian cancer spreads, and how to stop it.

You can click here to make a donation to OCRF through the Libby’s H*O*P*E*’s donation page.

  • Ovarian Cancer National Alliance

The Ovarian Cancer National Alliance (OCNA) is one of the foremost advocates for women with ovarian cancer in the U.S. To advance the interests of women with ovarian cancer, OCNA advocates at a national level for increases in research funding for the development of an early detection test, improved health care practices, and life-saving treatment protocols. OCNA also educates health care professionals and raises public awareness of the risks and symptoms of ovarian cancer.

To make a donation to OCNA, click here.

  • National Ovarian Cancer Coalition

The mission of the National Ovarian Cancer Coalition (NOCC) is to raise awareness and promote education about ovarian cancer. NOCC is committed to improving the survival rate and quality of life for women with ovarian cancer.

Through national programs and local Chapter initiatives, the NOCC’s goal is to make more people aware of the early symptoms of ovarian cancer. In addition, the NOCC provides information to assist the newly diagnosed patient, to provide hope to survivors, and to support caregivers.

To make a donation to NOCC, click here.

INSPIRE: Everyday Heroes in the Fight Against Ovarian Cancer.

Nearly 250,000 women are diagnosed with ovarian cancer every year around the world, and the disease also affects their families and friends. Please take time to visit the WOCD website and read the inspirational stories about survivors, volunteers, and family members who are overcoming ovarian cancer, as well as the endeavors people are taking on to raise awareness about the disease.

At Libby’s H*O*P*E*, we are amazed each and every day by the inspirational ovarian cancer survivors and family members that we hear about, correspond with, or meet. The stories below represent a small sample of incredible individuals who have successfully fought the disease, as well as those who are currently fighting the disease with courage and grace. There are also stories about women who have died from ovarian cancer, but contributed to ovarian cancer awareness in a unique and special way during life. In addition, there are stories about doctors, advocates, and other inspirational individuals who are clearly making a difference in the fight against the disease.

“Bald is Beautiful,” March 20, 2008.

“Patty Franchi Flaherty Loses Battle to Ovarian Cancer, But Deserves a Long Standing Ovation,” August 19, 2008.

“Oscar Winner Kathy Bates Is an Inspirational Ovarian Cancer Survivor,” February 25, 2009.

— “Rare Form of Ovarian Cancer Not Getting Inspirational 13 Yr. Old Down; You Can Help!,” February 26, 2009.

— “Meet Laurey Masterton, 20-Year Ovarian Cancer Survivor Extraordinaire,” March 20, 2009.

— “The Rock Band ‘N.E.D.’: Their Medical Skills Save Many; Their Music Could Save Thousands,” March 29, 2009.

“A Wish To Build A Dream On,” May 3, 2009.

“Husband’s Love For Wife Inspires A 9,000 Mile Bike Trek To Raise Money For Ovarian Cancer Awareness & Cancer Prevention,” May 14, 2009.

“Gloria Johns Was Told ‘Ovarian Cancer Patients Don’t Live Long Enough … To Have Support Groups;’ She Proved Otherwise,” June 5, 2009.

“Vox Populi:* How Do Your Define “Tragedy?“, January 22, 2010.

— “Smile, Open Your Eyes, Love and Go On,” July 28, 2010.

“PBS Documentary, ‘The Whisper: The Silent Crisis of Ovarian Cancer,'” September 21, 2010.

“Determined Teen Loses Ovarian Cancer Battle, But Her Courage Inspires An Entire Community,” December 28, 2010.

“Mrs. Australia Quest Finalist Veronica Cristovao Is Raising Ovarian Cancer Awareness ‘Down Under'”, February 28, 2011.

— “Whither Thou Goest, I Will Go …”, July 28, 2012.

— “Crowd Funding:” Paying Medical Bills With a Little Help From Your Friends (and Strangers Too!), January 17, 2013.

___________________________

For more information on World Ovarian Cancer Day visit: www.ovariancancerday.org

Facebook: www.facebook.com/WorldOvarianCancerDay

Twitter: @OvarianCancerDY

Pinterest: @OvarianCancerDY

Each participating country is linked through the dedicated website which has been established for World Ovarian Cancer Day. To find out more about activities in each country, please contact the local organization directly through the website at http://www.ovariancancerday.org/get-involved/

World Ovarian Cancer Day: One Voice for Every Woman

Each year, nearly a quarter of a million women around the world are diagnosed with ovarian cancer and the disease is responsible for 140,000 deaths annually. Statistics show that just 45% of women with ovarian cancer are likely to survive for five years compared with 89% of women with breast cancer. We ask that you join us on World Ovarian Cancer Day (May 8th) in the fight against the most lethal form of gynecologic cancer.

WOCD_Sharable_Graphic_square_2014

LEARN: World Ovarian Cancer Day — May 8, 2014

On May 8, join the global movement to raise awareness about ovarian cancer by pledging to spread the word about the most serious gynecological cancer during the second annual World Ovarian Cancer Day (WOCD). The pledge to pass on the awareness message to at least five friends will bring to life this year’s theme One Voice for Every Woman.

“The number one objective of World Ovarian Cancer Day is to increase awareness of this disease and to connect people internationally with the resources available to educate others,” says Elisabeth Baugh, chair of the WOCD international organizing committee and CEO of Ovarian Cancer Canada. “In our inaugural year, 28 cancer organizations from 18 countries participated in getting the word out, largely through social media. In 2014, we are not only inviting cancer organizations, but all interested groups internationally to register and partner with us. With our pledge, we are also involving individuals worldwide, and empowering them with information about ovarian cancer and a quick and easy way to pass on the word about the disease.”

All of those who sign the World Ovarian Cancer Day pledge at www.ovariancancerday.org will receive an e-card on May 8 with ovarian cancer risk and symptom information. This card is to be passed along to at least five friends, who in turn will be encouraged to pass it along to their friends.

Each year, nearly a quarter of a million women around the world are diagnosed with ovarian cancer and the disease is responsible for 140,000 deaths annually. Statistics show that just 45% of women with ovarian cancer are likely to survive for five years compared with 89% of women with breast cancer. Women in developed and developing countries are similarly affected by ovarian cancer. There is no test for the early detection of ovarian cancer, a disease characterized around the world by a lack of awareness of symptoms and late stage diagnosis.

WOCD’s social media campaign includes the WOCD website, Facebook, Twitter and Pinterest. To help raise awareness and show international involvement in the inaugural year, partner organizations and individuals from many countries wore teal and posed for photos in front of well-known landmarks holding signs featuring the WOCD “world embrace” logo.

These photographs were shared around the world. Other activities included public awareness events at train and subway stations, and information tables and education sessions at hospitals and cancer centers. These activities will continue to grow on May 8, 2014 along with governmental proclamations and “lighting the world in teal” – the color that represents ovarian cancer. Committee members Annwen Jones, Chief Executive of Target Ovarian Cancer, and Alison Amos, CEO, Ovarian Cancer Australia agree this is a wonderful opportunity. “World Ovarian Cancer Day is an important day for ovarian cancer organizations and communities around the world to unite and speak with one voice to raise awareness of ovarian cancer. We’re proud to be involved with this global initiative and will be passing the awareness message out among those we work with. This activity supports our vision to save lives and ensure that no woman with ovarian cancer walks alone.” “For women living with the disease and their families and friends, World Ovarian Cancer Day has tremendous meaning,” says Baugh. “Through this important day, we will continue to build momentum and a sense of solidarity in the fight against ovarian cancer. Every woman is at some risk for ovarian cancer and awareness remains our best defence.”

WOCDLate_Diagnosis_large1-980x600

EDUCATE: Ovarian Cancer Facts:

Libby’s H*O*P*E* is dedicated to my 26-year old cousin, Elizabeth “Libby” Remick, who died from ovarian cancer in July 2008. Our mission is to educate ovarian cancer survivors and their families, as well as the general public, about ovarian cancer under the principle that “information is power.” The key to a significant reduction in deaths from ovarian cancer is early detection. Early detection is best achieved by having women listen to their bodies for the subtle, yet persistent, early warning signs & symptoms of the disease as described below. Together, we can raise money for a reliable early detection test, and ultimately a cure, for ovarian cancer.

Please take time to educate yourself with respect to the important ovarian cancer awareness facts provided below.

–Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

–In 2014, the American Cancer Society (ACS) estimates that there will be approximately 21,980 new ovarian cancer cases diagnosed in the U.S. ACS estimates that 14,270 U.S. women will die from the disease, or about 40 women per day. The loss of life is equivalent to 28 Boeing 747 jumbo jet crashes with no survivors every year.

–Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that some women may experience persistent, nonspecific symptoms, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation.

–Ovarian cancer can afflict adolescent, young adult, and mature women.

–Pregnancy and the long-term use of oral contraceptives reduce the risk of developing ovarian cancer.

–Women who have had breast cancer, or who have a family history of breast cancer or ovarian cancer may have increased risk. Inherited mutations in BRCA1/BRCA2 genes increase risk. Women of Ashkenazi Jewish ancestry are at higher risk for BRCA gene mutations.

–There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear is used to detect cervical cancer, not ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed above.

–If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 19% of all cases are detected at this stage, usually fortuitously during another medical procedure.

–The 10-year relative survival rate for all disease stages combined is only 38%.

Please help us spread the word about the early warning signs & symptoms of ovarian cancer and raise money for ovarian cancer research. The life you save may be your own or that of a loved one.

FIGHT: The “Holy Trinity” of Major U.S. Ovarian Cancer Organizations

There are three major U.S. ovarian cancer organizations that are working to increase ovarian cancer awareness, and/or raise money to fight the disease. They are listed below. Please consider making a donation to one of these critically important nonprofit organizations.

  • Ovarian Cancer Research Fund

The Ovarian Cancer Research Fund (OCRF) is the largest independent organization in the U.S. that is dedicated exclusively to funding ovarian cancer research– and to finding a cure. Through its three research programs, OCRF funds many of the best researchers and the most innovative projects.

Since 1998, OCRF has awarded 63 leading medical centers 195 grants for ovarian cancer research: an investment totaling over $50 million. OCRF researchers are taking on ovarian cancer from many angles:

— Developing innovative strategies for early detection;

— Discovering genetic polymorphisms that increase risk for ovarian cancer;

— Understanding the underlying genetics and molecular biology of ovarian cancer;

— Identifying new, better targets for treatment;

— Determining how to super-charge a woman’s immune response to better fight ovarian cancer; and

— Deciphering how and why ovarian cancer spreads, and how to stop it.

You can click here to make a donation to OCRF through the Libby’s H*O*P*E*’s donation page.

  • Ovarian Cancer National Alliance

The Ovarian Cancer National Alliance (OCNA) is one of the foremost advocates for women with ovarian cancer in the U.S. To advance the interests of women with ovarian cancer, OCNA advocates at a national level for increases in research funding for the development of an early detection test, improved health care practices, and life-saving treatment protocols. OCNA also educates health care professionals and raises public awareness of the risks and symptoms of ovarian cancer.

To make a donation to OCNA, click here.

  • National Ovarian Cancer Coalition

The mission of the National Ovarian Cancer Coalition (NOCC) is to raise awareness and promote education about ovarian cancer. NOCC is committed to improving the survival rate and quality of life for women with ovarian cancer.

Through national programs and local Chapter initiatives, the NOCC’s goal is to make more people aware of the early symptoms of ovarian cancer. In addition, the NOCC provides information to assist the newly diagnosed patient, to provide hope to survivors, and to support caregivers.

To make a donation to NOCC, click here.

INSPIRE: Everyday Heroes in the Fight Against Ovarian Cancer.

Nearly a quarter million women are diagnosed with ovarian cancer every year around the world, and the disease also affects their families and friends. Please take time to visit the WOCD website and read inspirational stories about survivors, volunteers, and family members who are overcoming ovarian cancer, as well as the endeavors people are taking on to raise awareness about the disease.

At Libby’s H*O*P*E*, we are amazed each and every day by the inspirational ovarian cancer survivors and family members that we hear about, correspond with, or meet. The stories below represent a small sample of incredible individuals who have successfully fought the disease, as well as those who are currently fighting the disease with courage and grace. There are also stories about women who have died from ovarian cancer, but contributed to ovarian cancer awareness in a unique and special way during life. In addition, there are stories about doctors, advocates, and other inspirational individuals who are clearly making a difference in the fight against the disease.

“Bald is Beautiful,” March 20, 2008.

“Patty Franchi Flaherty Loses Battle to Ovarian Cancer, But Deserves a Long Standing Ovation,” August 19, 2008.

“Oscar Winner Kathy Bates Is an Inspirational Ovarian Cancer Survivor,” February 25, 2009.

— “Rare Form of Ovarian Cancer Not Getting Inspirational 13 Yr. Old Down; You Can Help!,” February 26, 2009.

— “Meet Laurey Masterton, 20-Year Ovarian Cancer Survivor Extraordinaire,” March 20, 2009.

— “The Rock Band ‘N.E.D.’: Their Medical Skills Save Many; Their Music Could Save Thousands,” March 29, 2009.

“A Wish To Build A Dream On,” May 3, 2009.

“Husband’s Love For Wife Inspires A 9,000 Mile Bike Trek To Raise Money For Ovarian Cancer Awareness & Cancer Prevention,” May 14, 2009.

“Gloria Johns Was Told ‘Ovarian Cancer Patients Don’t Live Long Enough … To Have Support Groups;’ She Proved Otherwise,” June 5, 2009.

“Vox Populi:* How Do Your Define “Tragedy?“, January 22, 2010.

— “Smile, Open Your Eyes, Love and Go On,” July 28, 2010.

“PBS Documentary, ‘The Whisper: The Silent Crisis of Ovarian Cancer,'” September 21, 2010.

“Determined Teen Loses Ovarian Cancer Battle, But Her Courage Inspires An Entire Community,” December 28, 2010.

“Mrs. Australia Quest Finalist Veronica Cristovao Is Raising Ovarian Cancer Awareness ‘Down Under'”, February 28, 2011.

— “Whither Thou Goest, I Will Go …”, July 28, 2012.

— “Crowd Funding:” Paying Medical Bills With a Little Help From Your Friends (and Strangers Too!), January 17, 2013.

___________________________

For more information on World Ovarian Cancer Day visit: www.ovariancancerday.org

Facebook: www.facebook.com/WorldOvarianCancerDay

Twitter: @OvarianCancerDY

Pinterest: @OvarianCancerDY

Each participating country is linked through the dedicated website which has been established for World Ovarian Cancer Day. To find out more about activities in each country, please contact the local organization directly through the website at http://www.ovariancancerday.org/get-involved/

Dana-Farber Oncologists Differ Widely on the Use of Multiplex Tumor Genomic Testing

A new study by researchers at the Dana-Farber Cancer Institute suggests that not all doctors are ready to embrace tests that may identify hundreds of genomic changes in a patient’s tumor sample for the purpose of determining appropriate treatment.

Many cancer researchers believe that cutting-edge advances in genomics will pave the way for personalized or “precision” cancer medicine for all patients in the near future. A new study by researchers at the Dana-Farber Cancer Institute, however, suggest that not all doctors are ready to embrace tests that look for hundreds of genomic changes in a patient’s tumor sample, while others plan to offer this type of cancer genomic tumor testing to most of their patients. The study findings were published recently in the Journal of Clinical Oncology [1], along with an accompanying editorial. [2]

The wide variation in attitudes was in part determined by physicians’ “genomic confidence.” Physicians who had a lot of confidence in their ability to use and explain genomic findings were more likely to want to prescribe the test and consider using test results when making treatment recommendations. Other physicians had lower levels of genomic confidence and were more reluctant to offer such testing. These findings are particularly interesting because the survey was carried out at the Dana-Farber/Brigham and Women’s Cancer Center (DF/BWCC), which has a comprehensive research program. The DF/BWCC research program allows all consenting patients to have genomic tumor testing, which is capable of finding gene mutations and other DNA alternations that drive a patient’s cancer. In some cases, the genomic tumor profiles identify “druggable” targets that may allow doctors to use specific drugs known to be effective against particular gene mutations or alterations.

The researchers were perplexed by another key study survey finding: 42 percent of responding oncologists approved of telling patients about genomic tumor test results even when their significance for the patient’s outlook and treatment is uncertain. This issue comes with the growing use of predictive multiplex genomic testing, which can identify tens or hundreds of gene mutations simultaneously and often detects rare DNA variants that may or may not be relevant to the treatment of an individual’s cancer.

“Some oncologists said we shouldn’t return these results to the patient, and others say ‘of course we should give them to the patient’,” said Stacy W. Gray, M.D., AM, of Dana-Farber, first author of the report. “I think the fact that we found so much variation in physicians’ confidence about their ability to use genetic data at a tertiary care, National Cancer Institute-designated Comprehensive Cancer Center makes us pause and wonder about how confident physicians in the community are about dealing with this,” she said. “It begs the question at a national level, how are we going to make sure that this technology for cancer care is adequately delivered?”

The study survey was conducted in 2011 and early 2012 as a baseline assessment of physicians’ attitudes prior to the rollout of the genomic tumor testing project referred to as “Profile” (which formerly utilized a technology platform called “OncoMap“) at DF/BWCC.

For purposes of the study, a total of 160 Dana-Farber adult cancer physicians – including medical oncologists (43%), surgeons (29%), and radiation oncologists (19%) – participated in the survey. They were asked about their current use of multiplex tumor genomic testing, their attitudes about multiplex testing, and their confidence in the ability to understand and use genomic data. The survey did not include a direct test of the physicians’ knowledge.

Among the many intriguing findings of this study, a wide variability in interest in multiplex tumor genomic testing was identified—25% of respondents anticipated testing more than 90% of their patients, whereas 17% of respondents anticipated testing 10% or less. Beliefs related to the potential value of multiplex tumor genomic testing were largely positive; most expressed belief that this form of testing would increase treatment (73%) and research options (90%) for patients, as well as both physician (80%) and patient satisfaction (80%).

Despite the foregoing, less than 50% of the physicians planned to view the multiplex tumor genomic testing results routinely. Moreover, the majority of respondents planned only to “rarely” or “sometimes” use the clinically relevant results (58%), called “Tier 1” by the study authors, and potentially actionable results (88%), called “Tier 2,” to assist them in the treatment of patients. However, the respondents more often indicated that results of multiplex tumor genomic tests should be shared with patients, particularly findings revealing the presence of a Tier 1 (clinically relevant) genomic variant—87% believed that these findings should be discussed—versus a Tier 2 (potentially actionable) genomic variant (50%), or a Tier 3 (uncertain significance) genomic variant (40%). A substantial minority (39%) also disagreed with a Dana-Farber Cancer Institute policy prohibiting the disclosure of Tier 3 genomic variants to patients.

Interestingly, despite limited exposure to routine genomic tests for a large portion of the respondents, the stated “genomic confidence” of participating physicians was quite high. The majority of participants reported that they were “somewhat” or “very” confident in their (i) knowledge of genomics (78%), (ii) ability to explain genomics (86%), and (iii) ability to use genomic results to guide treatment (74%); however, a substantial minority of the Dana-Farber physicians (28%) reported genomic confidence of “not very” or “not at all confident.”

Based upon the study survey findings, Dr. Gray and her colleagues conclude that there is “little consensus” on how physicians plan to use multiplex tumor genomic testing for personalized cancer care, and they suggest the need for evidence-based guidelines to help doctors determine when testing is indicated.

“I think one of the strengths of this study is that its information comes from an institution where ‘precision cancer medicine’ is available to everyone,” commented Barrett Rollins, M.D., Ph.D., Dana-Farber’s Chief Scientific Officer and a co-author of the paper. “It highlights the fact there’s a lot of work to be done before this can be considered a standard approach in oncology.”

The senior author of the study is Jane Weeks, M.D., MSc, of Dana-Farber; additional authors include Angel Cronin, MS, of Dana-Farber and Katherine Hicks-Courant, BA, of the University of Massachusetts Medical School.

The research was supported by the Dana-Farber Cancer Institute. Dr. Gray also receives support from the American Cancer Society (120529-MRSG-11-006-01-CPPB) and the National Human Genome Research Institute (U01HG006492)

Pursuant to a new phase of Profile, initiated by Dana-Farber in 2013, a more advanced technology platform (called “OncoPanel“) utilizes “massively parallel” or “next-generation” sequencing to read the genetic code of approximately 300 genes in each patient’s tumor sample. “Massively parallel” refers to the technology’s capacity for sequencing large numbers of genes simultaneously. The 300 genes evaluated in connection with the OncoPanel were chosen because they have been implicated in a variety of cancers.

In addition to the complete DNA sequencing of more than 300 genomic regions to detect known and unknown cancer-related mutations, the OncoPanel technology can also examine those regions for gains and losses of DNA sequences and rearrangements of DNA on chromosomes. The results are entered into a database for research purposes, but, if a patient agrees, the clinically important findings can also be returned to their doctor for use in the clinic.

The OncoPanel advanced sequencing platform is an important update to Dana-Farber’s original OncoMap platform. OncoPanel can detect not only commonly known gene mutations, but also other critical types of cancer-related DNA alterations not previously identified. In contrast, OncoMap was limited to screening for known cancer-related gene mutations. The OncoPanel testing is done at the Center for Advanced Molecular Diagnostics, a CLIA-certified laboratory operated by the Department of Pathology at Brigham and Women’s Hospital.

References:

1./ Gray SW, et al. Original Reports – Health Services and OutcomesPhysicians’ Attitudes About Multiplex Tumor Genomic TestingJ. Clin. Oncol., published online before print on March 24, 2014, doi:10.1200/JCO.2013.52.4298.

2./ Hall MJ. Conflicted Confidence: Academic Oncologists’ Views on Multiplex Tumor Genomic Testing. J. Clin. Oncol. Editorial, published online before print March 24, 2014, doi:10.1200/JCO.2013.54.8016

 

Inaugural World Ovarian Cancer Day: “World Embrace” to Learn, Educate, Fight & Inspire

May 8th, 2013, is the first World Ovarian Cancer Day. On this day, 26 ovarian cancer organizations from 17 countries around the world will unite to educate their communities about ovarian cancer and its symptoms. For women living with the disease, and their families and friends, World Ovarian Cancer Day will build a sense of solidarity in the fight against ovarian cancer.

WOCDbanner599558_512000218857166_1766774236_n

“LEARN:” Inaugural World Ovarian Cancer Day — May 8, 2013

Ovarian cancer has the lowest survival rate of all gynecologic cancers, and is characterized around the world by a lack of awareness of symptoms and late stage diagnosis.

Today, May 8th, 2013, is the first World Ovarian Cancer Day (WOCD). On this day, ovarian cancer organizations from around the world will unite to educate their communities about ovarian cancer and its symptoms. For women living with the disease, and their families and friends, World Ovarian Cancer Day will build a sense of solidarity in the fight against the disease.

In 2009, representatives from patient organizations working in ovarian cancer around the globe came together for the first time in a two day workshop, to discuss the common issues they faced in their work.

Unlike more common cancers, there are significant challenges as the disease has been largely overlooked and underfunded to this point. Symptoms which are similar to those of less serious illnesses, the absence of an early detection test, and the resulting late diagnosis and poor outcomes means there are few survivors of the disease to become advocates. This initial meeting galvanized the community to begin thinking about what could be accomplished on a global level to begin changing this situation.

By coming together since that first meeting, the group has considered the many gaps in understanding and managing the disease, building awareness in the general public about symptoms and the importance of family history, and increasing funding for research .The idea of a Global Awareness Day for Ovarian Cancer was put forward and embraced by all participants as an important joint international action creating a powerful momentum.

A brand for World Ovarian Cancer Day, “World Embrace,” was developed and launched to the international group in March 2013 in preparation for this important day.

WOCDLate_Diagnosis_large1-980x600

“EDUCATE:” Ovarian Cancer Facts:

Libby’s H*O*P*E* is dedicated to my 26-year old cousin, Elizabeth “Libby” Remick, who died from ovarian cancer in July 2008. Our mission is to educate ovarian cancer survivors and their families, as well as the general public, about ovarian cancer under the principle that “information is power.” The key to a significant reduction in deaths from ovarian cancer is early detection. Early detection is best achieved by having women listen to their bodies for the subtle, yet persistent, early warning signs & symptoms of the disease as described below. Together, we can raise money for a reliable early detection test, and ultimately a cure, for ovarian cancer.

Please take time to educate yourself with respect to the important ovarian cancer awareness facts provided below.

–Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

–In 2012, the American Cancer Society (ACS) estimates that there will be approximately 22,280 new ovarian cancer cases diagnosed in the U.S. ACS estimates that 15,550 U.S. women will die from the disease, or about 43 women per day. The loss of life is equivalent to 28 Boeing 747 jumbo jet crashes with no survivors every year.

–Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that some women may experience persistent, nonspecific symptoms, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation.

–Ovarian cancer can afflict adolescent, young adult, and mature women.

–Pregnancy and the long-term use of oral contraceptives reduce the risk of developing ovarian cancer.

–Women who have had breast cancer, or who have a family history of breast cancer or ovarian cancer may have increased risk. Inherited mutations in BRCA1/BRCA2 genes increase risk. Women of Ashkenazi Jewish ancestry are at higher risk for BRCA gene mutations.

–There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear is used to detect cervical cancer, not ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed above.

–If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 19% of all cases are detected at this stage, usually fortuitously during another medical procedure.

–The 10-year relative survival rate for all disease stages combined is only 38%.

Please help us spread the word about the early warning signs & symptoms of ovarian cancer and raise money for ovarian cancer research. The life you save may be your own or that of a loved one.

“FIGHT:” The “Holy Trinity” of Major U.S. Ovarian Cancer Organizations

There are three major U.S. ovarian cancer organizations that are working to increase ovarian cancer awareness, and/or raise money to fight the disease. They are listed below. Please consider making a donation to one of these critically important nonprofit organizations.

  • Ovarian Cancer Research Fund

The Ovarian Cancer Research Fund (OCRF) is the largest independent organization in the U.S. that is dedicated exclusively to funding ovarian cancer research– and to finding a cure. Through its three research programs, OCRF funds many of the best researchers and the most innovative projects.

Since 1998, OCRF has awarded 63 leading medical centers 195 grants for ovarian cancer research: an investment totaling over $50 million. OCRF researchers are taking on ovarian cancer from many angles:

— Developing innovative strategies for early detection;

— Discovering genetic polymorphisms that increase risk for ovarian cancer;

— Understanding the underlying genetics and molecular biology of ovarian cancer;

— Identifying new, better targets for treatment;

— Determining how to super-charge a woman’s immune response to better fight ovarian cancer; and

— Deciphering how and why ovarian cancer spreads, and how to stop it.

You can click here to make a donation to OCRF through the Libby’s H*O*P*E*’s donation page.

  • Ovarian Cancer National Alliance

The Ovarian Cancer National Alliance (OCNA) is one of the foremost advocates for women with ovarian cancer in the U.S. To advance the interests of women with ovarian cancer, OCNA advocates at a national level for increases in research funding for the development of an early detection test, improved health care practices, and life-saving treatment protocols. OCNA also educates health care professionals and raises public awareness of the risks and symptoms of ovarian cancer.

To make a donation to OCNA, click here.

  • National Ovarian Cancer Coalition

The mission of the National Ovarian Cancer Coalition (NOCC) is to raise awareness and promote education about ovarian cancer. NOCC is committed to improving the survival rate and quality of life for women with ovarian cancer.

Through national programs and local Chapter initiatives, the NOCC’s goal is to make more people aware of the early symptoms of ovarian cancer. In addition, the NOCC provides information to assist the newly diagnosed patient, to provide hope to survivors, and to support caregivers.

To make a donation to NOCC, click here.

“INSPIRE:” Everyday Heroes in the Fight Against Ovarian Cancer.

Nearly a quarter million women are diagnosed with ovarian cancer every year around the world, and the disease also affects their families and friends. Please take time to visit the WOCD website and read inspirational stories about survivors, volunteers, and family members who are overcoming ovarian cancer, as well as the endeavors people are taking on to raise awareness about the disease.

At Libby’s H*O*P*E*, we are amazed each and every day by the inspirational ovarian cancer survivors and family members that we hear about, correspond with, or meet. The stories below represent a small sample of incredible individuals who have successfully fought the disease, as well as those who are currently fighting the disease with courage and grace. There are also stories about women who have died from ovarian cancer, but contributed to ovarian cancer awareness in a unique and special way during life. In addition, there are stories about doctors, advocates, and other inspirational individuals who are clearly making a difference in the fight against the disease.

“Bald is Beautiful,” March 20, 2008.

“Patty Franchi Flaherty Loses Battle to Ovarian Cancer, But Deserves a Long Standing Ovation,” August 19, 2008.

“Oscar Winner Kathy Bates Is an Inspirational Ovarian Cancer Survivor,” February 25, 2009.

— “Rare Form of Ovarian Cancer Not Getting Inspirational 13 Yr. Old Down; You Can Help!,” February 26, 2009.

— “Meet Laurey Masterton, 20-Year Ovarian Cancer Survivor Extraordinaire,” March 20, 2009.

— “The Rock Band ‘N.E.D.’: Their Medical Skills Save Many; Their Music Could Save Thousands,” March 29, 2009.

“A Wish To Build A Dream On,” May 3, 2009.

“Husband’s Love For Wife Inspires A 9,000 Mile Bike Trek To Raise Money For Ovarian Cancer Awareness & Cancer Prevention,” May 14, 2009.

“Gloria Johns Was Told ‘Ovarian Cancer Patients Don’t Live Long Enough … To Have Support Groups;’ She Proved Otherwise,” June 5, 2009.

“Vox Populi:* How Do Your Define “Tragedy?“, January 22, 2010.

— “Smile, Open Your Eyes, Love and Go On,” July 28, 2010.

“PBS Documentary, ‘The Whisper: The Silent Crisis of Ovarian Cancer,'” September 21, 2010.

“Determined Teen Loses Ovarian Cancer Battle, But Her Courage Inspires An Entire Community,” December 28, 2010.

“Mrs. Australia Quest Finalist Veronica Cristovao Is Raising Ovarian Cancer Awareness ‘Down Under'”, February 28, 2011.

— “Whither Thou Goest, I Will Go …”, July 28, 2012.

— “Crowd Funding:” Paying Medical Bills With a Little Help From Your Friends (and Strangers Too!), January 17, 2013.

___________________________

For more information on World Ovarian Cancer Day visit: www.ovariancancerday.org

Facebook: www.facebook.com/WorldOvarianCancerDay

Twitter: @OvarianCancerDY

Pinterest: @OvarianCancerDY

Each participating country is linked through the dedicated website which has been established for World Ovarian Cancer Day. To find out more about activities in each country, please contact the local organization directly through the website at http://www.ovariancancerday.org/get-involved/

U.K. Researchers Launch Clinical Trial of Mercaptopurine (6-MP) In Women with Hereditary Breast and Ovarian Cancer

A Cancer Research UK-funded clinical trial of a new drug for patients with advanced breast or ovarian cancer due to inherited BRCA gene mutations has been launched at the Experimental Cancer Medicine Centre at the University of Oxford.

A Cancer Research UK-funded trial of a new drug for patients with advanced breast or ovarian cancer due to inherited BRCA gene faults has been launched at the Experimental Cancer Medicine Centre at the University of Oxford (OxFord ECMC).

Mutations in the BRCA 1 (BReast CAncer-1) and BRCA 2 genes are thought to account for around 2-5 percent of all breast cancer cases. Women carrying the BRCA1 and BRCA2 mutation have a 45-65 percent chance of developing breast cancer, and a 20-45 percent chance of developing ovarian cancer, by the age of 70. Genetic testing for faulty BRCA genes is available for women with a very strong family history.

DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day. A special enzyme (shown above in color), encircles the double helix to repair a broken strand of DNA. Without molecules that can mend DNA single strand and double strand breaks, cells can malfunction, die, or become cancerous. (Photo: Courtesy of Tom Ellenberger, Washington University School of Medicine in St. Louis)

Cells lacking a properly functioning BRCA1 or BRCA2 gene  are less able to repair DNA damage. These defective cells are more sensitive to (i) platinum-based chemotherapy drugs such as cisplatin – which work by causing double-stranded DNA breaks, and (ii) PARP inhibitors, a newer class of drugs which prevent cells lacking a properly functioning BRCA gene from being able to repair damaged DNA. PARP inhibitors have shown promise in clinical trials but, as with most drugs, resistance can develop meaning some women can stop responding.

This trial, led by a team based at the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, is looking at a drug called “6MP” (a/k/a mercaptopurine; brand name: Purinethol), which is already used to treat leukemia and is often given in combination with another chemotherapy drug called “methotrexate.”

Earlier studies involving cells grown in the laboratory suggest that a class of drugs called “thiopurines,” which includes 6MP, are effective at killing cancer cells lacking BRCA – a gene which significantly increases the risk of breast and ovarian cancer – even after they have developed resistance to treatments like PARP inhibitors and cisplatin.

This trial is one of a growing number looking at matching patients to the most appropriate treatment based on their genetic makeup and that of their cancer – an approach known as “personalized medicine.”

If successful, the results will pave the way for a larger Phase 3 clinical trial, which could lead to an additional treatment option for the 15 out of every 100 women with breast and ovarian cancers, which are caused by faults in the BRCA1 or BRCA2 gene.

Trial leader Dr. Shibani Nicum, a gynecology specialist based at the Oxford ECMC, and a researcher in Oxford University’s Department of Oncology, said: “PARP inhibitors are a powerful new class of drugs developed specifically to target tumors caused by BRCA 1 and BRCA2 faults, but drug resistance remains a problem. We hope that the very encouraging results we have seen in early laboratory studies involving 6MP will lead to increased treatment options for these patients in the future.”

U.K. trial participant Suzanne Cole, 54, from Newbury, has a strong history of ovarian cancer in her family, with her sister, mother and grandmother all having been diagnosed with suspected cases of the disease at a relatively young age. But, it was not until many years later, after she herself was diagnosed with cancer, that doctors were able to trace the cause of this back to a BRCA1 mutation in her family.

Suzanne Cole said: “I was diagnosed in 2009 and initially had surgery then chemotherapy. I was then told about the trial and I went away and studied the information. The doctors were able to answer all my questions and then I agreed to sign up. I’m happy to be a part of this work as it could help others by moving treatments forward.”

Professor Mark Middleton, director of the Oxford ECMC, said: “It’s exciting to see drugs being developed for specific groups of patients who share the same underlying genetic faults in their cancer. Targeted treatments are at the cutting edge of cancer care and we’re proud to be involved in bringing such drugs a step closer to the clinic.”

Dr. Sally Burtles, Cancer Research UK’s director of the ECMC Network, said: “This study helps demonstrate the value of being able to pool subsets of patients who share specific rare faults in their tumor from a UK-wide network of Experimental Cancer Medicine Centres. This will be crucial as we move towards a new era of personalized medicine with treatments targeted according to the individual biological profile of a patient’s cancer.”

For more information on the trial, please visit www.cancerhelp.org.uk, or call the Cancer Research UK cancer information nurses on 0808-800-4040.

Sources:

  • Researchers trial new drug for women with hereditary breast and ovarian cancer, Press Release, Cancer Research UK, August 17, 2011.
  • Issaeva N, et al. 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 2010 Aug 1;70(15):6268-76. Epub 2010 Jul 14. PubMed PMID: 20631063; PubMed PMCID: PMC2913123.

Inherited Mutations in RAD51D Gene Confer Susceptibility to Ovarian Cancer

Cancer Research UK-funded scientists have discovered that women who carry a faulty copy of a gene called RAD51D have almost a 1-in-11 chance of developing ovarian cancer. The finding that inherited mutations in the RAD51D gene confer susceptibility to ovarian cancer was reported in a study published online in Nature Genetics on August 7, 2011.

Cancer Research UK-funded scientists have discovered that women who carry a faulty copy of the RAD51D gene have nearly a 1-in-11 chance of developing ovarian cancer. The finding that inherited mutations in the RAD51D gene confer susceptibility to ovarian cancer was reported in a study published online in Nature Genetics on August 7, 2011.

(Photo: Cancer Research UK)

Although hereditary faults in RAD51D are thought to account for less than one in every hundred ovarian cancer cases – fewer than 60 women every year in the UK – this discovery could prove very important in the future in connection with the prevention and treatment of the disease in women who carry the faulty gene.

The team at The Institute of Cancer Research (ICR) examined DNA from women from 911 families with ovarian and breast cancer and compared differences in DNA with a control group of 1,060 people from the general population.

The team discovered eight germline (inherited) gene faults in the RAD51D gene in women with cancer, compared with one in the control group.

Ovarian cancer is the fifth most common cancer in women with approximately 6,500 cases diagnosed annually in the UK. The researchers estimate that RAD51D gene faults are present in almost one percent of women with ovarian cancer; that is, around 50 UK women each year.

Around one woman in 70 in the general population is at risk of developing ovarian cancer, but for those with a RAD51D gene fault this risk is increased to 1-in-11 – making these women six times more likely to develop the disease. The RAD51D gene fault also caused a slight increase in the risk of breast cancer.

The RAD51D gene is important for repairing damaged DNA. When the RAD51D gene is faulty, a key DNA repair pathway known as “homologous recombination” (HR) fails. This means DNA damage is not fixed and DNA faults build up in cells which make them more likely to turn into cancer.

The UK team also showed that cells with faulty RAD51D can be selectively destroyed by a relatively new class of cancer drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors.” When the researchers tested the drugs on cells with the faulty RAD51D gene, they observed a dramatic effect – nearly 90 percent of the cells died, compared with just 10 percent of cells with fully functional RAD51D. These drugs are showing great promise in clinical trials for the treatment of breast and ovarian cancers with faults in the BRCA1 and BRCA2 genes, which are also important for repairing damaged DNA.

Professor Nazneen Rahman

Cancer Research UK-funded scientist and study author Professor Nazneen Rahman, head of the Division of Genetics and Epidemiology at The Institute of Cancer Research and The Royal Marsden cancer center, said:

“Women with a fault in the RAD51D gene have a 1-in-11 chance of developing ovarian cancer. At this level of risk, women may wish to consider having their ovaries removed after having children, to prevent ovarian cancer from occurring. There is also real hope on the horizon that drugs specifically targeted to the gene will be available.”

Professor Nic Jones

Professor Nic Jones, Cancer Research UK’s chief scientist, said:

“It’s incredibly exciting to discover this high risk gene for ovarian cancer. It’s further evidence that a range of different high risk genes are causing the development of breast and ovarian cancer and we hope there are more waiting to be discovered in different cancers. We believe the results of this research will help inform personalized treatment approaches and give doctors better information about risks of cancer to tell patients.”

Harpal S. Kumar, CEO, Cancer Research UK

Harpal Kumar, Cancer Research UK’s chief executive, said:

“Survival from ovarian cancer has almost doubled in the last 30 years. This landmark discovery is another piece of the jigsaw deepening our understanding of the disease. We hope this will have a significant impact in providing more personalised treatments for patients based on their genetic make-up, saving more lives from ovarian cancer. All of our research is generously funded by the public. This support has allowed us to invest heavily in the identification of DNA changes which paint a picture of which parts of a person’s gene set are linked to cancer. This life-changing discovery exemplifies the importance of this research and the importance of ongoing public support.”

Again, it is important to stress that faults in the RAD51D gene are rare, probably causing fewer than one in every 100 ovarian cancers. Yet for the small proportion of women who carry a faulty RAD51D gene, there is a chance of developing ovarian cancer, thereby making it a significant new finding.

Cancer Research UK is the largest single funder of ovarian cancer research in the UK – last year it spent more than £12 million of public donations on tackling the disease.

The RAD51D gene mutation study findings in relation to ovarian cancer susceptibility add to past evidence which links the gene to the disease. On April 21, 2010, Libby’s H*O*P*E*™ reported that a team of German researchers determined that RAD51C also increases a woman’s risk of breast and ovarian cancer.  Specifically, the identified risk for breast cancer in women with the RAD51C mutation was reported to be 60 percent to 80 percent, while the identified risk for ovarian cancer was 20 percent to 40 percent.

On November 11, 2010, we also reported that a separate group of U.K. researchers concluded that (i) HR-deficient status can be determined in primary ovarian cancer through a “RAD51 assay,” and (ii) such status correlates with in vitro response to PARP inhibition. Accordingly, the researchers concluded that potentially 50 percent to 60 percent of ovarian cancers patients could benefit from PARP inhibitors, but they noted that use of the RAD51 assay as a biomarker requires additional clinical trial testing. Although the RAD51 assay test that was used by these U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Sources:

About Cancer Research UK

  • Cancer Research UK is the world’s leading cancer charity dedicated to saving lives through research.
  • The charity’s groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.
  • Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last forty years.
  • Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
  • Together with its partners and supporters, Cancer Research UK’s vision is to beat cancer.

For further information about Cancer Research UK’s work or to find out how to support the charity, please call 020-7121-6699 or visit www.cancerresearchuk.org

About The Institute of Cancer Research (ICR)

  • The ICR is Europe’s leading cancer research center.
  • The ICR has been ranked the UK’s top academic research center, based on the results of the Higher Education Funding Council’s Research Assessment Exercise.
  • The ICR works closely with partner The Royal Marsden NHS Foundation Trust to ensure patients immediately benefit from new research. Together the two organisations form the largest comprehensive cancer centre in Europe.
  • The ICR has charitable status and relies on voluntary income.
  • As a college of the University of London, the ICR also provides postgraduate higher education of international distinction.

Over its 100-year history, the ICR’s achievements include identifying the potential link between smoking and lung cancer which was subsequently confirmed, discovering that DNA damage is the basic cause of cancer and isolating more cancer-related genes than any other organization in the world.

For more information visit www.icr.ac.uk

About The Royal Marsden

  • The Royal Marsden is a world-leading cancer centre specializing in cancer diagnosis, treatment, research and education.
  • The Royal Marsden is also partners with The Institute of Cancer Research. Through this partnership, it undertakes groundbreaking research into new cancer drug therapies and treatments. The partnership makes The Royal Marsden the biggest and most comprehensive cancer center in Europe, with a combined staff of 3,500.

2011 ASCO: Women with BRCA Gene Mutations Can Take Hormone-Replacement Therapy Safely After Ovary Removal

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania which will be presented on Monday, June 6 during the American Society for Clinical Oncology’s annual meeting. Results of the prospective study indicated that women with BRCA mutations who had their ovaries removed and took short-term HRT had a decrease in the risk of developing breast cancer.

Research has shown that in women who carry the BRCA gene mutations, the single most powerful risk-reduction strategy is to have their ovaries surgically removed by their mid-30s or early 40s. The decrease in cancer risk from ovary removal comes at the cost of early menopause and menopausal symptoms including hot flashes, mood swings, sleep disturbances and vaginal dryness — quality-of-life issues that may cause some women to delay or avoid the procedure.

Lead study author Susan M. Domchek, M.D., Associate Professor, Divison of Hematology-Oncology & Director, Cancer Risk Evaluation Program, Abramson Cancer Center, University of Pennsylvania

“Women with BRCA1/2 mutations should have their ovaries removed following child-bearing because this is the single best intervention to improve survival,” says lead author Susan M. Domchek, M.D., an associate professor in the division of Hematology-Oncology and director of the Cancer Risk Evaluation Program at Penn’s Abramson Cancer Center. “It is unfortunate to have women choose not to have this surgery because they are worried about menopausal symptoms and are told they can’t take HRT. Our data say that is not the case — these drugs do not increase their risk of breast cancer.”

Senior author Timothy R. Rebbeck, Ph.D., associate director of population science at the Abramson Cancer Center, notes that BRCA carriers may worry — based on other studies conducted in the general population showing a link between HRT and elevated cancer risk — that taking HRT may negate the effects of the surgery on their breast cancer risk. The message he hopes doctors will now give to women is clear: “If you need it, you can take short-term HRT. It doesn’t erase the effects of the oophorectomy.”

In the current study, Domchek, Rebbeck, and colleagues followed 795 women with BRCA1 mutations and 504 women with BRCA2 mutations who have not had cancer enrolled in the PROSE consortium database who underwent prophylactic oophorectomy, divided into groups of those who took HRT and those who did not. Women who underwent prophylactic oophorectomy had a lower risk of breast cancer than those who did not, with 14 percent of the women who took HRT after surgery developing breast cancer compared to 12 percent of the women who did not take HRT after surgery. The difference was not statistically significant.

Domchek says some of the confusion about the role of HRT in cancer risk elevation comes from the fact that the risks and benefits associated with HRT depend on the population of women studied. In this group of women — who have BRCA1/2 mutations and who have had their ovaries removed while they are quite young — HRT should be discussed and considered an option for treating menopausal symptoms. “People want to make hormone replacement therapy evil, so they can say ‘Don’t do it,'” she says. “But there isn’t one simple answer. The devil is in the details of the studies.”

By contrast, Penn researchers and their collaborators in the PROSE consortium have shown definitively that oophorectomy reduces ovarian and breast cancer incidence in these women, and reduces their mortality due to those cancers. But paying attention to the role that hormone depletion following preventive oophorectomy plays in women’s future health is also important.

“We know for sure that using HRT will mitigate menopausal symptoms, and we have pretty good evidence that it will help bone health,” she says. “Women need to be aware that going into very early menopause does increase their risk of bone problems and cardiovascular problems. And even if they aren’t going to take HRT, they need to be very attentive to monitoring for those issues. But they also need to know that HRT is an option for them and to discuss it with their doctors and other caregivers.”

About Penn Medicine

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise. Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

About the University of Pennsylvania Perelman School of Medicine

Penn’s Perelman School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

About the University of Pennsylvania Health System

The University of Pennsylvania Health System’s patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation’s top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation’s first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Sources:

2011 NCCN Conference: New Treatment Options Lead to Steady Progress Against Ovarian Cancer

Recommendations stemming from recent clinical trials highlight notable updates to the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™) for Ovarian Cancer at the National Comprehensive Cancer Network® (NCCN®) 16th Annual Conference.

Robert J. Morgan, Jr., M.D., Professor of Medical Oncology, City of Hope Comprehensive Cancer Center; Chair, NCCN Guidelines Panel for Ovarian Cancer

Although finding effective screening tools remains a priority, new treatment options for women with ovarian cancer, such as the ones outlined in the updated NCCN Guidelines for Ovarian Cancer,[1] are vital to making steady progress against the disease according to Robert J. Morgan, Jr., M.D., of City of Hope Comprehensive Cancer Center and chair of the NCCN Guidelines Panel for Ovarian Cancer. Dr. Morgan outlined significant updates to the NCCN Guidelines during a recent presentation at the NCCN 16th Annual Conference.

The NCCN Guidelines address epithelial ovarian cancer (including borderline or low malignant potential) and less common histopathologies, including malignant germ neoplasms, carcinosarcomas, and sex cord-stromal tumors. They also discuss fallopian tube cancer and primary peritoneal cancer, which are less common neoplasms that are managed in a similar manner to epithelial ovarian cancer.

“Regardless of the type of cancer, the NCCN Guidelines for Ovarian Cancer reflect the importance of stage and grade of disease on prognosis and treatment recommendations,” said Dr. Morgan.

The NCCN Guidelines continue to recommend that women with borderline epithelial ovarian cancer of low malignant potential be primarily surgically managed. In contrast to patients with frankly invasive ovarian carcinoma, women with borderline disease tend to be younger and are often diagnosed with stage I disease.

“The benefits of postoperative chemotherapy has not been demonstrated for patients who have no microscopically demonstrable invasive implants, said Dr. Morgan. “Even patients with advanced stage disease at presentation have an excellent prognosis and chemotherapy should be avoided.”

The NCCN Guidelines recommend surgery limited to a unilateral salpingo-oophorectomy (USO) (preserving the uterus and contralateral ovary) for women who wish to maintain their fertility, and standard ovarian cancer debulking surgery is recommended for those not concerned about fertility preservation.

On the contrary, in women diagnosed with stage II, III, or IV epithelial ovarian cancer, the NCCN Guidelines recommend intraperitoneal chemotherapy for first-line therapy and have been updated to include dose-dense paclitaxel (Taxol®:, Bristol-Myers Squibb) as a possible treatment option.

Dr. Morgan noted that in a recent clinical trial, dose-dense weekly paclitaxel with carboplatin (Paraplatin®:, Bristol-Myers Squibb) showed an increase in both progression-free survival and overall survival when compared with conventional intraperitoneal chemotherapy of weekly carboplatin/paclitaxel.[2]

“However, the dose-dense regimen is more toxic, and patients discontinued dose-dense paclitaxel therapy more often than those receiving standard therapy,” stated Dr. Morgan. “As with all treatment decisions, the patient needs to weigh the potential benefits and risks and discuss them thoroughly with their physician.”

Dr. Morgan discussed two additional phase 3 trials assessing bevacizumab (Avastin®:, Genentech/Roche) combined with carboplatin/paclitaxel in the upfront setting compared to carboplatin/paclitaxel alone.[3-4] Although data regarding overall survival and quality of life have not been reported yet, the studies did indicate that the median progression-free survival increased in patients receiving bevacizumab as a first line and maintenance therapy.

“Only modest improvements in progression-free survival were observed in both of these trials. The NCCN Guidelines Panel prefers to await mature results of these trials prior to recommending the routine addition of bevacizumab to carboplatin/paclitaxel,” said Dr. Morgan.

As such, the updated NCCN Guidelines includes new language detailing the Panel’s view on bevacizumab encouraging participation in ongoing clinical trials that are further investigating the role of anti-angiogenesis agents in the treatment of ovarian cancer, both in the upfront and recurrence settings.

Biomarkers continue to emerge as an area of interest in predicting future patterns of the disease. In patients with ovarian cancer, Dr. Morgan discussed the value of monitoring CA-125 levels in regards to a recent study[5] comparing early versus delayed treatment of relapsed ovarian cancer.

“Often, levels of CA-125 have been shown to rise prior to a clinical or symptomatic relapse in women with ovarian cancer. This trial looked at whether there was a benefit of early treatment on the basis of increased CA-125 concentrations compared with delayed treatment on the basis of clinical recurrence,” said Dr. Morgan.

The study, which was published in The Lancet, found that there was no survival benefit to early institution of treatment based on increased CA-125 levels and that the quality of life was superior in patients in the late treatment arm.

“The results of the trial suggest that the utility of the routine monitoring of CA-125 levels in limited,” said Dr. Morgan. “The NCCN Guidelines Panel encourages patients and their physicians to actively discuss the pros and cons of CA-125 monitoring based upon these findings and have updated the NCCN Guidelines to include language supporting this recommendation.”

Virtually all drugs used in oncology have the potential to cause adverse drug reactions while being infused, which can be classified as either infusion or allergic reactions. Recently, hypersensitivity to platinum compounds has been recognized as a potential issue for patients being administered these compounds.

“Platinum compounds remain very important in the treatment of ovarian cancer in both the upfront and recurrence settings, so it was important to design strategies to allow for the safe desensitization of these agents in patients who develop allergies,” said Dr. Morgan.

Standard desensitization regimens include slowly increasing infusion concentrations over several hours. However, Dr. Morgan noted that these procedures must be done in a specific manner in order to be safely administered and pointed to the recommendations within the updated NCCN Guidelines discussing the management of drug reactions.

In conclusion, Dr. Morgan emphasized that although steady progress is being made in the treatment of ovarian cancer, further trials are necessary to investigate the role of targeted agents alone and in combination in newly diagnosed and recurrent ovarian cancer. In addition, enrollment of patients with ovarian cancer must be encouraged.

The NCCN Guidelines are developed and updated through an evidence-based process with explicit review of the scientific evidence integrated with expert judgment by multidisciplinary panels of expert physicians from NCCN Member Institutions. The most recent version of this and all NCCN Guidelines are available free of charge at NCCN.org. The NCCN Guidelines for Patients™: Ovarian Cancer is available at NCCN.com.

About the National Comprehensive Cancer Network

The National Comprehensive Cancer Network® (NCCN®), a not-for-profit alliance of 21 of the world’s leading cancer centers, is dedicated to improving the quality and effectiveness of care provided to patients with cancer. Through the leadership and expertise of clinical professionals at NCCN Member Institutions, NCCN develops resources that present valuable information to the numerous stakeholders in the health care delivery system. As the arbiter of high-quality cancer care, NCCN promotes the importance of continuous quality improvement and recognizes the significance of creating clinical practice guidelines appropriate for use by patients, clinicians, and other health care decision-makers. The primary goal of all NCCN initiatives is to improve the quality, effectiveness, and efficiency of oncology practice so patients can live better lives. For more information, visit NCCN.org.

The NCCN Member Institutions are:

  • City of Hope Comprehensive Cancer Center
  • Dana-Farber/Brigham and Women’s Cancer Center
  • Massachusetts General Hospital Cancer Center
  • Duke Cancer Institute
  • Fox Chase Cancer Center
  • Huntsman Cancer Institute at the University of Utah
  • Fred Hutchinson Cancer Research Center / Seattle Cancer Care Alliance
  • The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
  • Robert H. Lurie Comprehensive Cancer Center of Northwestern University
  • Memorial Sloan-Kettering Cancer Center
  • H. Lee Moffitt Cancer Center & Research Institute
  • The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute
  • Roswell Park Cancer Institute
  • Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
  • St. Jude Children’s Research Hospital / University of Tennessee Cancer Institute
  • Stanford Comprehensive Cancer Center
  • University of Alabama at Birmingham Comprehensive Cancer Center
  • UCSF Helen Diller Family Comprehensive Cancer Center
  • University of Michigan Comprehensive Cancer Center
  • UNMC Eppley Cancer Center at The Nebraska Medical Center
  • The University of Texas MD Anderson Cancer Center
  • Vanderbilt-Ingram Cancer Center

References:

1/ Ovarian Cancer Including Fallopian Tube Cancer & Primary Peritoneal Cancer, Version 2.2011, NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines™), National Comprehensive Cancer Network. [PDF Adobe Reader Document – requires free registration and log-in at NCCN.org]

2/ Katsumata N, Yasuda M, Takahashi F, et. alJapanese Gynecologic Oncology Group. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trialLancet. 2009 Oct 17;374(9698):1331-8. Epub 2009 Sep 18. PubMed PMID: 19767092.

3/ Burger RA, Brady MF, Bookman MA, et. al.  Phase III trial of bevacizumab in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC):  a Gynecologic Oncology Group study.  J Clin Oncol 28:18s, 2010 (suppl; abstr LBA1).

4/ Perren T, Swart AM, Pfisterer J, et. alICON7: A phase III randomized gynecologic cancer intergroup trial of concurrent bevacizumab and chemotherapy followed by maintenance bevacizumab, versus chemotherapy alone in women with newly diagnosed epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC).Ann Oncol 21;viii2, 2010 (suppl 8; abstr LBA4).

5/Rustin G, van der Burg M, Griffin C, et. al. Early versus delayed treatment of relapsed ovarian cancer. Lancet. 2011 Jan 29;377(9763):380-1. PubMed PMID: 21277438.

Source:

Additional 2011 NCCN Annual Meeting Information

2011 SGO Annual Meeting: Ovarian Cancer Abstracts Selected For Presentation

The March 2011 supplemental issue of Gynecologic Oncology sets forth the ovarian cancer and ovarian cancer-related medical abstracts selected by the Society of Gynecologic Oncologists for presentation at its 42nd Annual Meeting on Women’s Cancer™, which is being held in Orlando, Florida from March 6-9, 2011.

The Society of Gynecologic Oncologists (SGO) is hosting its 42nd Annual Meeting on Women’s Cancer™ (March 6–9, 2011) in Orlando, Florida. The SGO Annual Meeting attracts more than 1,700 gynecologic oncologists and other health professional from around the world.

In connection with this premier gynecologic cancer event, 651 abstracts, and 27 surgical films were submitted for consideration. After careful discussion and deliberation, the SGO selected 51 abstracts for oral presentation (27 Plenary session papers, 24 Focused Plenary papers, and 42 Featured Posters, presented in a new, electronic format), along with 227 for poster presentation. Of the 27 surgical films originally submitted, five films were selected for presentation during a featured Focused Plenary session.

The ovarian cancer abstracts listed below were obtained from the March 2011 supplemental issue of Gynecologic Oncology. Each abstract bears the number that it was assigned in the Gynecologic Oncology journal table of contents.

Please note that we provide below (under the heading “Additional Information”) Adobe Reader PDF copies of the 2011 SGO Annual Meeting program summary and the medical abstract booklet (includes all gynecologic cancer topics). If you require a free copy of the Adobe Reader software, please visit http://get.adobe.com/reader/otherversions/.

For your convenience, we listed the 2011 SGO Annual Meeting ovarian cancer abstracts under the following subject matter headings:  (1) ovarian cancer symptoms, (2) ovarian cancer screening, (3) pathology, (4) ovarian cancer staging, (5) chemotherapy, (6) diagnostic and prognostic biomarkers, (7) clinical trial drugs and results, (8) hereditary breast & ovarian cancer syndrome (BRCA gene deficiencies & Lynch Syndrome), (9) gynecologic practice, (10) gynecologic surgery, (11) genetic/molecular profiling, (12) immunotherapy, (13) medical imaging, (14) preclinical studies – general, (15) preclinical studies – potential therapeutic targets, (16) palliative and supportive care, (17) rare ovarian cancers, (18) survival data, (19) survivorship, (20) other, (21) late breaking abstracts.

Ovarian Cancer Symptoms

142. Utility of symptom index in women at increased risk for ovarian cancer. (SGO Abstract #140)

184. Symptom-triggered screening for ovarian cancer: A pilot study of feasibility and acceptability. (SGO Abstract #182)

187. Women without ovarian cancer reporting disease-specific symptoms. (SGO Abstract #185)

Ovarian Cancer Screening

12. Ovarian cancer: Predictors of primary care physicians’ referral to gynecologic oncologists. (SGO Abstract #10)

84. Long-term survival of patients with epithelial ovarian cancer detected by sonographic screening. (SGO Abstract #82)

90. Significant endometrial pathology detected during a transvaginal ultrasound screening trial for ovarian cancer. (SGO Abstract #88)

109. Detection of the tissue-derived biomarker peroxiredoxin 1 in serum of patients with ovarian cancer: A biomarker feasibility study. (SGO Abstract #107)

113. Epithelial ovarian cancer tumor microenvironment is a favorable biomarker resource. (SGO Abstract #111)

127. Stop and smell the volatile organic compounds: A novel breath-based bioassay for detection of ovarian cancer. (SGO Abstract #125)

144. Incidental gynecologic FDG-PET/CT findings in women with a history of breast cancer. (SGO Abstract #142)

156. Discovery of novel monoclonal antibodies (MC1–MC6) to detect ovarian cancer in serum and differentiate it from benign tumors. (SGO Abstract #154)

158. Evaluation of the risk of ovarian malignancy algorithm (ROMA) in women with a pelvic mass presenting to general gynecologists. (SGO Abstract #156)

162. Human epididymis protein 4 increases specificity for the detection of invasive epithelial ovarian cancer in premenopausal women presenting with an adnexal mass. (SGO Abstract #160)

163. Identification of biomarkers to improve specificity in preoperative assessment of ovarian tumor for risk of cancer. (SGO Abstract #161)

171. OVA1 has high sensitivity in identifying ovarian malignancy compared with preoperative assessment and CA-125. (SGO Abstract #169)

172. OVA1 improves the sensitivity of the ACOG referral guidelines for an ovarian mass. (SGO Abstract #170)

182. Sonographic predictors of ovarian malignancy. (SGO Abstract #180)

237. Management of complex pelvic masses using the OVA1 test: A decision analysis. (SGO Abstract #235)

241. Three-dimensional power doppler angiography as a three-step technique for differential diagnosis of adnexal masses: A prospective study. (SGO Abstract #239)

Pathology

145. Accuracy of frozen-section diagnosis of ovarian borderline tumor. (SGO Abstract #143)

Ovarian Cancer Staging

31. Should stage IIIC ovarian cancer be further stratified by intraperitoneal versus retroperitoneal-only disease? A Gynecologic Oncology Group study. (SGO Abstract #29)

173. Peritoneal staging biopsies in early-stage ovarian cancer: Are they necessary? (SGO Abstract #171)

Chemotherapy

29. Treatment of chemotherapy-induced anemia in patients with ovarian cancer: Does the use of erythropoiesis-stimulating agents worsen survival? (SGO Abstract #27)

69. Intraperitoneal chemotherapy for recurrent ovarian cancer appears efficacious with high completion rates and low complications. (SGO Abstract #67)

174. Predictors of severe and febrile neutropenia during primary chemotherapy for ovarian cancer. (SGO Abstract #172)

177. Sequencing of therapy and outcomes associated with use of neoadjuvant chemotherapy in advanced epithelial ovarian cancer in the Medicare population. (SGO Abstract #175)

179. Should we treat patients with ovarian cancer with positive retroperitoneal lymph nodes with intraperitoneal chemotherapy? Impact of lymph node status in women undergoing intraperitoneal chemotherapy. (SGO Abstract #177)

229. Predictors and effects of reduced relative dose intensity in women receiving their primary course of chemotherapy for ovarian cancer. (SGO Abstract #227)

Diagnostic & Prognostic Biomarkers

128. Stress and the metastatic switch in epithelial ovarian carcinoma. (SGO Abstract #126)

130. The cytoskeletal gateway for tumor aggressiveness in ovarian cancer is driven by class III β-tubulin. (SGO Abstract #128)

134. True blood: Platelets as a biomarker of ovarian cancer recurrence. (SGO Abstract #132)

148. CA-125 changes can predict optimal interval cytoreduction in patients with advanced-stage epithelial ovarian cancer treated with neoadjuvant chemotherapy. (SGO Abstract #146)

149. CA-125 surveillance for women with ovarian, fallopian tube or primary peritoneal cancers: What do survivors think? (SGO Abstract #147)

150. Calretinin as a prognostic indicator in granulosa cell tumor. (SGO Abstract #148)

135. Tumor expression of the type I insulin-like growth factor receptor is an independent prognostic factor in epithelial ovarian cancer. (SGO Abstract #133)

147. C-terminal binding protein 2: A potential marker for response to histone deacetylase inhibitors in epithelial ovarian cancer. (SGO Abstract #145)

157. Elevated serum adiponectin levels correlate with survival in epithelial ovarian cancers. (SGO Abstract #155)

175. Prognostic impact of prechemotherapy HE4 and CA-125 levels in patients with ovarian cancer. (SGO Abstract #175)

178. Serum HE4 level is an independent risk factor of surgical outcome and prognosis of epithelial ovarian cancer. (SGO Abstract #176)

Clinical Trial Drugs & Results

8. MicroRNA as a novel predictor of response to bevacizumab in recurrent serous ovarian cancer: An analysis of The Cancer Genome Atlas. (SGO Abstract #6)

9. Prospective investigation of risk factors for gastrointestinal adverse events in a phase III randomized trial of bevacizumab in first-line therapy of advanced epithelial ovarian cancer, primary peritoneal cancer or fallopian tube cancer: A Gynecologic Oncology Group study. (SGO Abstract #7)

10. First in human trial of the poly(ADP)-ribose polymerase inhibitor MK-4827 in patients with advanced cancer with antitumor activity in BRCA-deficient and sporadic ovarian cancers.  (SGO Abstract #8)

30. An economic analysis of intravenous carboplatin plus dose-dense weekly paclitaxel versus intravenous carboplatin plus every three-weeks paclitaxel in the upfront treatment of ovarian cancer. (SGO Abstract #28)

51. BRCA1-deficient tumors demonstrate enhanced cytotoxicity and T-cell recruitment following doxil treatment. (SGO Abstract #49)

54. A novel combination of a MEK inhibitor and fulvestrant shows synergistic antitumor activity in estrogen receptor-positive ovarian carcinoma. (SGO Abstract #52)

68. An economic analysis of bevacizumab in recurrent treatment of ovarian cancer. (SGO Abstract #66)

71. A phase II study of gemcitabine, carboplatin and bevacizumab for the treatment of platinum-sensitive recurrent ovarian cancer. (SGO Abstract #69)

72. A phase I clinical trial of a novel infectivity-enhanced suicide gene adenovirus with gene transfer imaging capacity in patients with recurrent gynecologic cancer. (SGO Abstract #70)

73. A phase I study of a novel lipopolymer-based interleukin-12 gene therapeutic in combination with chemotherapy for the treatment of platinum-sensitive recurrent ovarian cancer. (SGO Abstract #71)

74. AMG 386 combined with either pegylated liposomal doxorubicin or topotecan in patients with advanced ovarian cancer: Results from a phase Ib study. (SGO Abstract #72)

86. Pressure to respond: Hypertension predicts clinical benefit from bevacizumab in recurrent ovarian cancer. (SGO Abstract #84)

152. Changes in tumor blood flow as estimated by dynamic-contrast MRI may predict activity of single-agent bevacizumab in recurrent epithelial ovarian cancer and primary peritoneal cancer: An exploratory analysis of a Gynecologic Oncology Group phase II trial. (SGO Abstract #150)

153. Comparing overall survival in patients with epithelial ovarian, primary peritoneal or fallopian tube cancer who received chemotherapy alone versus neoadjuvant chemotherapy followed by delayed primary debulking. (SGO Abstract #151)

154. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced ovarian cancer. (SGO Abstract #152)

193. Pegylated liposomal doxorubicin with bevacizumab in the treatment of platinum-resistant ovarian cancer: Toxicity profile results. (SGO Abstract #191)

194. Phase II Trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. (SGO Abstract #192)

195. A phase I/II trial of IDD-6, an autologous dendritic cell vaccine for women with advanced ovarian cancer in remission. (SGO Abstract #193)

183. STAC: A phase II study of carboplatin/paclitaxel/bevacizumab followed by randomization to either bevacizumab alone or erlotinib and bevacizumab in the upfront management of patients with ovarian, fallopian tube or peritoneal cancer. (SGO Abstract #181)

228. Is it more cost-effective to use bevacizumab in the primary treatment setting or at recurrence? An economic analysis. (SGO Abstract #226)

240. The use of bevacizumab and cytotoxic and consolidation chemotherapy for the upfront treatment of advanced ovarian cancer: Practice patterns among medical and gynecologic oncology SGO members. (SGO Abstract #238)

Hereditary Breast & Ovarian Cancer Syndrome (BRCA gene deficiencies & Lynch Syndrome)

39. BRCAness profile of ovarian cancer predicts disease recurrence. (SGO Abstract #37)

52. A history of breast carcinoma predicts worse survival in BRCA1 and BRCA2 mutation carriers with ovarian carcinoma. (SGO Abstract #52)

137. Does genetic counseling for women at high risk of harboring a deleterious BRCA mutation alter risk-reduction strategies and cancer surveillance behaviors? (SGO Abstract #135)

138. Hereditary breast and ovarian cancer syndrome based on family history alone and implications for patients with serous carcinoma. (SGO Abstract #138)

139. Management and clinical outcomes of women with BRCA1/2 mutations found to have occult cancers at the time of risk-reducing salpingo-oophorectomy. (SGO Abstract #137)

141. The impact of BRCA testing on surgical treatment decisions for patients with breast cancer. (SGO Abstract #139)

136. Compliance with recommended genetic counseling for Lynch syndrome: Room for improvement. (SGO Abstract #134)

Gynecologic Practice

81. Availability of gynecologic oncologists for ovarian cancer care. (SGO Abstract #79)

Gynecologic Surgery

19. Single-port paraaortic lymph node dissection. (SGO Abstract #17)

20. Robotic nerve-sparing radical hysterectomy type C1. (SGO Abstract #18)

21. Urinary reconstruction after pelvic exenteration: Modified Indiana pouch. (SGO Abstract #19)

22. Intrathoracic cytoreductive surgery by video-assisted thoracic surgery in advanced ovarian carcinoma. (SGO Abstract #20)

26. Cost comparison of strategies for the management of venous thromboembolic event risk following laparotomy for ovarian cancer. (SGO Abstract #24)

28. Primary debulking surgery versus neoadjuvant chemotherapy in stage IV ovarian cancer. (SGO Abstract #26)

33. Does the bedside assistant matter in robotic surgery: An analysis of patient outcomes in gynecologic oncology. (SGO Abstract #31)

48. Defining the limits of radical cytoreductive surgery for ovarian cancer. (SGO Abstract #46)

87. Prognostic impact of lymphadenectomy in clinically early-stage ovarian malignant germ cell tumor. (SGO Abstract #85)

93. Secondary cytoreductive surgery: A key tool in the management of recurrent ovarian sex cord–stromal tumors. (SGO Abstract #91)

146. Advanced-stage ovarian cancer metastases to sigmoid colon mesenteric lymph nodes: Clinical consideration of tumor spread and biologic behavior. (SGO Abstract #144)

155. Cytoreductive surgery for serous ovarian cancer in patients 75 years and older. (SGO Abstract #153)

168. Intraperitoneal catheters placed at the time of bowel surgery: A review of complications. (SGO Abstract #166)

169. Laparoscopic versus laparotomic surgical staging for early-stage epithelial ovarian cancer. (SGO Abstract #167)

170. Oncologic and reproductive outcomes of cystectomy compared with oophorectomy as treatment for borderline ovarian tumor. (SGO Abstract #168)

180. Significance of perioperative infectious disease in patients with ovarian cancer. (SGO Abstract #178)

185. The feasibility of mediastinal lymphadenectomy in the management of advanced and recurrent ovarian carcinoma. (SGO Abstract #183)

235. Incidence of venous thromboembolism after robotic surgery for gynecologic malignancy: Is dual prophylaxis necessary? (SGO Abstract #233)

286. Charlson’s index: A validation study to predict surgical adverse events in gynecologic oncology. (SGO Abstract #284)

288. Cost-effectiveness of extended postoperative venous thromboembolism prophylaxis in gynecologic pncology patients. (SGO Abstract #286)

302. Integration of and training for robot-assisted surgery in a gynecologic oncology fellowship program. (SGO Abstract #300)

303. Outcomes of patients with gynecologic malignancies undergoing video-assisted thorascopic surgery and pleurodesis for malignant pleural effusion. (SGO Abstract #301)

304. Perioperative and pathologic outcomes following robot-assisted laparoscopic versus abdominal management of ovarian cancer. (SGO Abstract #302)

307. Predictive risk factors for prolonged hospitalizations after gynecologic laparoscopic surgery. (SGO Abstract #305)

309. Robot-assisted surgery for gynecologic cancer: A systematic review. (SGO Abstract #307)

310. Robotic radical hysterectomy: Extent of tumor resection and operative outcomes compared with laparoscopy and exploratory laparotomy. (SGO Abstract #308)

315. Utilization of specialized postoperative services in a comprehensive surgical cytoreduction program. (SGO Abstract #313)

Genetic/Molecular Profiling

5. A 3’ UTR KRAS variant as a biomarker of poor outcome and chemotherapy resistance in ovarian cancer. (SGO Abstract #3)

15. XPC single-nucleotide polymorphisms correlate with prolonged progression-free survival in advanced ovarian cancer. (SGO Abstract #13)

16. Genomewide methylation analyses reveal a prominent role of HINF1 network genes, via hypomethylation, in ovarian clear cell carcinoma. (SGO Abstract #14)

49. Loss of ARID1A is a frequent event in clear cell and endometrioid ovarian cancers. (SGO Abstract #47)

53. Genetic variants in the mammalian target of rapamycin (mTOR) signaling pathway as predictors of clinical response and survival in women with ovarian cancer. (SGO Abstract #51)

55. BAD apoptosis pathway expression and survival from cancer. (SGO Abstract #53)

59. Molecular profiling of advanced pelvic serous carcinoma associated with serous tubal intraepithelial carcinoma. (SGO Abstract #57)

82. Biologic roles of tumor and endothelial delta-like ligand 4 in ovarian cancer. (SGO Abstract #80)

85. MicroRNA 101 inhibits ovarian cancer xenografts by relieving the chromatin-mediated transcriptional repression of p21waf1/cip1. (SGO Abstract #83)

102. Association between global DNA hypomethylation in leukocytes and risk of ovarian cancer. (SGO Abstract #100)

103. Cisplatin, carboplatin, and paclitaxel: Unique and common pathways that underlie ovarian cancer response. (SGO Abstract #101)

106. Comparison of mTOR and HIF pathway alterations in the clear cell carcinoma variant of kidney, ovary and endometrium. (SGO Abstract #104)

107. Concordant gene expression profiles in matched primary and recurrent serous ovarian cancers predict platinum response. (SGO Abstract #105)

111. Differential microRNA expression in cis-platinum-resistant versus -sensitive ovarian cancer cell lines. (SGO Abstract #109)

112. DNA methylation markers associated with serous ovarian cancer subtypes. (SGO Abstract #110)

118. MicroRNA and messenger RNA pathways associated with ovarian cancer cell sensitivity to topotecan, gemcitabine and doxorubicin. (SGO Abstract #116)

119. Molecular profiling of patients with curatively treated advanced serous ovarian carcinoma from The Cancer Genome Atlas. (SGO Abstract #117)

125. Proteomic analysis demonstrates that BRCA1-deficient epithelial ovarian cancer cell lines activate alternative pathways following exposure to cisplatin. (SGO Abstract #123)

132. The tumor suppressor KLF6, lost in a majority of ovarian cancer cases, represses VEGF expression levels. (SGO Abstract #130)

126. Quantitative PCR array identification of microRNA clusters associated with epithelial ovarian cancer chemoresistance. (SGO Abstract #124)

160. Genes functionally regulated by methylation in ovarian cancer are involved in cell proliferation, development and morphogenesis. (SGO Abstract #158)

181. Single-nucleotide polymorphism in DNA repair and drug resistance genes alone or in combination in epithelail ovarian cancer. (SGO Abstract #179)

278. Expression patterns of p53 and p21 cell cycle regulators and clinical outcome in women with pure gynecologic sarcomas. (SGO Abstract #276)

Immunotherapy

98. Ab-IL2 fusion proteins mediate NK cell immune synapse formation in epithelial ovarian cancer by polarizing CD25 to the target cell–effector cell interface. (SGO Abstract #96)

124. Proteasome inhibition increases death receptors and decreases major histocompatibility complex I expression: Pathways to exploit in natural killer cell immunotherapy. (SGO Abstract #122)

Medical Imaging

164. Impact of FDG-PET in suspected recurrent ovarian cancer and optimization of patient selection for cytoreductive surgery. (SGO Abstract #162)

294. The clinical and financial implications of MRI of pelvic masses. (SGO Abstract #292)

Preclinical Studies

11. A unique microRNA locus at 19q13.41 sensitizes epithelial ovarian cancers to chemotherapy. (SGO Abstract #9)

14. Common single-nucleotide polymorphisms in the BNC2, HOXD1 and MERIT40 regions contribute significantly to racial differences in ovarian cancer incidence. (SGO Abstract #12)

46. Development of a preclinical serous ovarian cancer mouse model. (SGO Abstract #44)

56. Examination of matched primary and recurrent ovarian cancer specimens supports the cancer stem cell hypothesis. (SGO Abstract #54)

58. Modeling of early events in serous carcinogenesis: Molecular prerequisites for transformation of fallopian tube epithelial cells. (SGO Abstract #56)

101. Antiproliferative activity of a phenolic extract from a native Chilean Amaranthaceae plant in drug-resistant ovarian cancer cell lines. (SGO Abstract #99)

115. Identification and characterization of CD44+/CD24–ovarian cancer stem cell properties and their correlation with survival. (SGO Abstract #113)

Preclinical Studies – Potential Therapeutic Targets

57. Hypoxia-mediated activation of signal transducer and activator of transcription 3 (STAT3) in ovarian cancer: A novel therapeutic strategy using HO-3867, a STAT3 inhibitor (and novel curcumin analog). (SGO Abstract #55)

61. The ubiquitin ligase EDD mediates platinum resistance and is a target for therapy in epithelial ovarian cancer. (SGO Abstract #59)

97. A novel hedgehog pathway smoothened inhibitor (BMS-833923) demonstrates in vitro synergy with carboplatin in ovarian cancer cells. (SGO Abstract #95)

100. AMPK activation mimics glucose deprivation and induces cytotoxicity in ovarian cancer cells. (SGO Abstract #98)

104. Clinical significance of vascular cell adhesion molecule 1 (VCAM-1) in the ovarian cancer microenvironment. (SGO Abstract #102)

105. Combined erbB/VEGFR blockade has improved anticancer activity over single-pathway inhibition in ovarian cancer in vivo. (SGO Abstract #103)

114. EZH2 expression correlates with increased angiogenesis in ovarian carcinoma. (SGO Abstract #112)

116. Induction of apoptosis in cisplatin-resistant ovarian cancer cells by G-1, a specific agonist of the G-protein-coupled estrogen receptor GPR30. (SGO Abstract #114)

120. Neuropilin-1 blockade in the tumor microenvironment reduces tumor growth. (SGO Abstract #118)

129. Targeting the hedgehog pathway reverses taxane resistance in ovarian cancer. (SGO Abstract #127)

121. Ovarian cancer lymph node metastases express unique cellular structure and adhesion genes. (SGO Abstract #119)

122. Overexpression of fibroblast growth factor 1 and fibroblast growth factor receptor 4 in high-grade serous ovarian carcinoma: Correlation with survival and implications for therapeutic targeting. (SGO Abstract #120)

131. The pattern of H3K56 acetylation expression in ovarian cancer. (SGO Abstract #129)

133. Thinking outside of the tumor: Targeting the ovarian cancer microenvironment. (SGO Abstract #131)

161. Horm-A domain-containing protein 1 (HORMAD1) and outcomes in patients with ovarian cancer. (SGO Abstract #159)

165. Influence of the novel histone deacetylase inhibitor panobinostat (LBH589) on the growth of ovarian cancer. (SGO Abstract #163)

166. Inhibition of stress-induced phosphoprotein 1 decreases proliferation of ovarian cancer cell lines. (SGO Abstract #164)

167. Insulin-like growth factor receptor 1 pathway signature correlates with adverse clinical outcome in ovarian cancer. (SGO Abstract #165)

230. Therapeutic synergy and resensitization of drug-resistant ovarian carcinoma to cisplatin by HO-3867. (SGO Abstract #228)

Palliative & Supportive Care

159. Factors associated with hospice use in ovarian cancer. (SGO Abstract #226)

190. Age-related preferences regarding end-of-life care discussions among gynecologic oncology patients. (SGO Abstract #188)

192. Palliative care education in gynecologic oncology: A survey of the fellows. (SGO Abstract #190)

Rare Ovarian Cancers

151. Carcinosarcoma of the ovary: A case–control study. (SGO Abstract #149)

Survival Data

80. Ten-year relative survival for epithelial ovarian cancer. (SGO Abstract #78)

83. Impact of beta blockers on epithelial ovarian cancer survival. (SGO Abstract #81)

176. Revisiting the issue of race-related outcomes in patients with stage IIIC papillary serous ovarian cancer who receive similar treatment. (SGO Abstract #174)

186. The impact of diabetes on survival in women with ovarian cancer. (SGO Abstract #184)

284. Survival following ovarian versus uterine carcinosarcoma. (SGO Abstract #282)

285. The unique natural history of mucinous tumors of the ovary. (SGO Abstract #283)

292. Stage IC ovarian cancer: Tumor rupture versus ovarian surface involvement. (SGO Abstract #290)

Survivorship

191. Menopausal symptoms and use of hormone replacement therapy: The gynecologic cancer survivors’ perspective. (SGO Abstract #189)

Other

4. From guidelines to the front line: Only a minority of the Medicare population with advanced epithelial ovarian cancer receive optimal therapy. (SGO Abstract #2)

32. Efficacy of influenza vaccination in women with ovarian cancer. (SGO Abstract #30)

91. Women with invasive gynecologic malignancies are more than 12 times as likely to commit suicide as are women in the general population. (SGO Abstract #89)

231. Attrition of first-time faculty in gynecologic oncology: Is there a difference between men and women? (SGO Abstract #229)

238. Relative impact of cost drivers on the increasing expense of inpatient gynecologic oncology care. (SGO Abstract #236)

Late-Breaking Abstracts

About Society of Gynecologic Oncologists (SGO)

The SGO is a national medical specialty organization of physicians and allied healthcare professionals who are trained in the comprehensive management of women with malignancies of the reproductive tract. Its purpose is to improve the care of women with gynecologic cancer by encouraging research, disseminating knowledge which will raise the standards of practice in the prevention and treatment of gynecologic malignancies, and cooperating with other organizations interested in women’s health care, oncology and related fields. The Society’s membership, totaling more than 1,400, is primarily comprised of gynecologic oncologists, as well as other related medical specialists including medical oncologists, radiation oncologists, nurses, social workers and pathologists. SGO members provide multidisciplinary cancer treatment including chemotherapy, radiation therapy, surgery and supportive care. More information on the SGO can be found at www.sgo.org.

About Gynecologic Oncologists

Gynecologic oncologists are physicians committed to the comprehensive treatment of women with cancer. After completing four years of medical school and four years of residency in obstetrics and gynecology, these physicians pursue an additional three to four years of training in gynecologic oncology through a rigorous fellowship program overseen by the American Board of Obstetrics and Gynecology. Gynecologic oncologists are not only trained to be skilled surgeons capable of performing wide-ranging cancer operations, but they are also trained in prescribing the appropriate chemotherapy for those conditions and/or radiation therapy when indicated. Frequently, gynecologic oncologists are involved in research studies and clinical trials that are aimed at finding more effective and less toxic treatments to further advance the field and improve cure rates.

Studies on outcomes from gynecologic cancers demonstrate that women treated by a gynecologic oncologist have a better likelihood of prolonged survival compared to care rendered by non-specialists. Due to their extensive training and expertise, gynecologic oncologists often serve as the “team captain” who coordinates all aspects of a woman’s cancer care and recovery. Gynecologic oncologists understand the impact of cancer and its treatments on all aspects of women’s lives including future childbearing, sexuality, physical and emotional well-being—and the impact cancer can have on the patient’s whole family.

Sources:

Additional Information:


U.S. President Barack Obama Proclaims September 2010 As National Ovarian Cancer Awareness Month

Yesterday, U.S. President Barack Obama designated September 2010 as National Ovarian Cancer Awareness Month.  During National Ovarian Cancer Awareness Month, we honor all those lost to and living with ovarian cancer, and we renew our commitment to developing effective screening methods, improving treatments, and ultimately defeating this disease.

The White House

Office of the Press Secretary

For Immediate Release August 31, 2010

Presidential Proclamation–National Ovarian Cancer Awareness Month

While we have made great strides in the battle against ovarian cancer, this disease continues to claim more lives than any other gynecologic cancer. During National Ovarian Cancer Awareness Month, we honor all those lost to and living with ovarian cancer, and we renew our commitment to developing effective screening methods, improving treatments, and ultimately defeating this disease.

Each year, thousands of women are diagnosed with, and go on to battle valiantly against, this disease. Yet, ovarian cancer remains difficult to detect, and women are often not diagnosed until the disease has reached an advanced stage. I encourage all women — especially those with a family history of ovarian cancer or breast cancer, and those over age 55 — to protect their health by understanding risk factors and discussing possible symptoms, including abdominal pain, with their health care provider. Women and their loved ones may also visit Cancer.gov for more information about the symptoms, diagnosis, and treatment of ovarian and other cancers.

Across the Federal Government, we are working to promote awareness of ovarian cancer and advance its diagnosis and treatment. The National Cancer Institute, the Centers for Disease Control and Prevention, and the Department of Defense all play vital roles in reducing the burden of this illness through critical investments in research. Earlier this year, I was proud to sign into law the landmark Affordable Care Act (ACA), which includes provisions to help women living with ovarian cancer. The ACA eliminates annual and lifetime limits on benefits, creates a program for those who have been denied health insurance because of a pre-existing condition, and prohibits insurance companies from canceling coverage after individuals get sick. The ACA also requires that women enrolling in new insurance plans and those covered by Medicare or Medicaid receive free preventive care — including women’s health services and counseling related to certain genetic screenings that identify increased risks for ovarian cancer. In addition, the ACA prohibits new health plans from dropping coverage if an individual chooses to participate in a potentially life-saving clinical trial, or from denying coverage for routine care simply because an individual is enrolled in such a trial.

During National Ovarian Cancer Awareness Month and throughout the year, I commend all the brave women fighting this disease, their families and friends, and the health care providers, researchers, and advocates working to reduce this disease’s impact on our Nation. Together, we can improve the lives of all those affected and create a healthier future for all our citizens.

NOW, THEREFORE, I, BARACK OBAMA, President of the United States of America, by virtue of the authority vested in me by the Constitution and the laws of the United States, do hereby proclaim September 2010 as National Ovarian Cancer Awareness Month. I call upon citizens, government agencies, organizations, health care providers, and research institutions to raise ovarian cancer awareness and continue helping Americans live longer, healthier lives.

IN WITNESS WHEREOF, I have hereunto set my hand this thirty-first day of August, in the year of our Lord two thousand ten, and of the Independence of the United States of America the two hundred and thirty-fifth.

BARACK OBAMA

Source: NATIONAL OVARIAN CANCER AWARENESS MONTH, 2010, By the President of the United States of America, A Proclamation, Office of the Press Secretary For The President of the United States of America, The White House, August 31, 2010.

Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results

The largest study to correlate genetics with response to anticancer drugs released its first results on July 15. The researchers behind the study, based at Massachusetts General Hospital Cancer Center and the Wellcome Trust Sanger Institute, describe in this initial dataset the responses of 350 cancer samples (including ovarian cancer) to 18 anticancer therapeutics.

U.K.–U.S. Collaboration Builds a Database For “Personalized” Cancer Treatment

The Genomics of Drug Sensitivity in Cancer project released its first results on July 15th. Researchers released a first dataset from a study that will expose 1,000 cancer cell lines (including ovarian) to 400 anticancer treatments.

The largest study to correlate genetics with response to anticancer drugs released its first results on July 15. The researchers behind the study, based at Massachusetts General Hospital Cancer Center and the Wellcome Trust Sanger Institute, describe in this initial dataset the responses of 350 cancer samples (including ovarian cancer) to 18 anticancer therapeutics.

These first results, made freely available on the Genomics of Drug Sensitivity in Cancer website, will help cancer researchers around the world to obtain a better understanding of cancer genetics and could help to improve treatment regimens.

Dr. Andy Futreal, co-leader of the Cancer Genome Project at the Wellcome Trust Sanger Institute, said:

Today is our first glimpse of this complex interface, where genomes meet cancer medicine. We will, over the course of this work, add to this picture, identifying genetic changes that can inform clinical decisions, with the hope of improving treatment.  By producing a carefully curated set of data to serve the cancer research community, we hope to produce a database for improving patient response during cancer treatment.

How a patient responds to anticancer treatment is determined in large part by the combination of gene mutations in her or his cancer cells. The better this relationship is understood, the better treatment can be targeted to the particular tumor.

The aim of the five-year, international drug-sensitivity study is to find the best combinations of treatments for a wide range of cancer types: roughly 1000 cancer cell lines will be exposed to 400 anticancer treatments, alone or in combination, to determine the most effective drug or combination of drugs in the lab.

The therapies include known anticancer drugs as well as others in preclinical development.

To make the study as comprehensive as possible, the researchers have selected 1000 genetically characterized cell lines that include common cancers such as breast, colorectal and lung. Each cell line has been genetically fingerprinted and this data will also be publicly available on the website. Importantly, the researchers will take promising leads from the cancer samples in the lab to be verified in clinical specimens: the findings will be used to design clinical studies in which treatment will be selected based on a patient’s cancer mutation spectrum.

The new data released today draws on large-scale analyses of cancer genomes to identify genomic markers of sensitivity to anticancer drugs.

The first data release confirms several genes that predict therapeutic response in different cancer types. These include sensitivity of melanoma, a deadly form of skin cancer, with activating mutations in the gene BRAF to molecular therapeutics targeting this protein, a therapeutic strategy that is currently being exploited in the clinical setting. These first results provide a striking example of the power of this approach to identify genetic factors that determine drug response.

Dr. Ultan McDermott, Faculty Investigator at the Wellcome Trust Sanger Institute, said:

It is very encouraging that we are able to clearly identify drug–gene interactions that are known to have clinical impact at an early stage in the study. It suggests that we will discover many novel interactions even before we have the full complement of cancer cell lines and drugs screened. We have already studied more gene mutation-drug interactions than any previous work but, more importantly, we are putting in place a mechanism to ensure rapid dissemination of our results to enable worldwide collaborative research. By ensuring that all the drug sensitivity data and correlative analysis is freely available in an easy-to-use website, we hope to enable and support the important work of the wider community of cancer researchers.

Further results from this study should, over its five-year term, identify interactions between mutations and drug sensitivities most likely to translate into benefit for patients: at the moment we do not have sufficient understanding of the complexity of cancer drug response to optimize treatment based on a person’s genome.

Professor Daniel Haber, Director of the Cancer Center at Massachusetts General Hospital and Harvard Medical School, said:

We need better information linking tumor genotypes to drug sensitivities across the broad spectrum of cancer heterogeneity, and then we need to be in position to apply that research foundation to improve patient care.  The effectiveness of novel targeted cancer agents could be substantially improved by directing treatment towards those patients that genetic study suggests are most likely to benefit, thus “personalizing” cancer treatment.

The comprehensive results include correlating drug sensitivity with measurements of mutations in key cancer genes, structural changes in the cancer cells (copy number information) and differences in gene activity, making this the largest project of its type and a unique resource for cancer researchers around the world.

Professor Michael Stratton, co-leader of the Cancer Genome Project and Director of the Wellcome Trust Sanger Institute, said:

“This is one of the Sanger Institute’s first large-scale explorations into the therapeutics of human disease.  I am delighted to see the early results from our partnership with the team at Massachusetts General Hospital. Collaboration is essential in cancer research: this important project is part of wider efforts to bring international expertise to bear on cancer.”

Ovarian Cancer Sample Gene Mutation Prevalence

As part of the Cancer Genome Project, researchers identified gene mutations found in 20 ovarian cancer cell lines and the associated prevalence of such mutations within the sample population tested. For purposes of this project, a mutation — referred to by researchers as a “genetic event” in the project analyses description — is defined as (i) a coding sequence variant in a cancer gene, or (ii) a gene copy number equal to zero (i.e., a gene deletion) or greater than or equal to 8 (i.e., gene amplification).  The ovarian cancer sample analysis thus far, indicates the presence of mutations in twelve genes. The genes that are mutated and the accompanying mutation prevalence percentage are as follows:  APC (5%), CDKN2A (24%), CTNNB1 (5%), ERBB2/HER-2 (5%), KRAS (10% ), MAP2K4 (5%), MSH2 (5%), NRAS (10%), PIK3CA (10%), PTEN (14%), STK11 (5%), and TP53 (62%). Accordingly, as of date, the top five ovarian cancer gene mutations occurred in TP53, CDKN2A, CDKN2a(p14)(see below), PTEN, and KRAS.

Click here to view the Ovary Tissue Overview.  Click here to download a Microsoft Excel spreadsheet listing the mutations in 52 cancer genes across tissue types. Based upon the Ovary Tissue Overview chart, the Microsoft Excel Chart has not been updated to include the following additional ovarian cancer sample mutations and associated prevalence percentages: CDKN2a(p14)(24%), FAM123B (5%), FBXW7 (5%), MLH1 (10%), MSH6 (5%).

18 AntiCancer Therapies Tested; Next 9 Therapies To Be Tested Identified

As presented in the initial study results, 18 drugs/preclinical compounds were tested against various cancer cell lines, including ovarian. The list of drugs/preclinical compounds that were tested for sensitivity are as follows:  imatinib (brand name: Gleevec),  AZ628 (C-Raf inhibitor)MG132 (proteasome inhibitor), TAE684 (ALK inhibitor), MK-0457 (Aurora kinase inhibitor)sorafenib (C-Raf kinase & angiogenesis inhibitor) (brand name: Nexavar), Go 6976 (protein kinase C (PKC) inhibitor), paclitaxel (brand name: Taxol), rapamycin (mTOR inhibitor)(brand name: Rapamune), erlotinib (EGFR inhibitor)(brand name: Tarceva), HKI-272 (a/k/a neratinib) (HER-2 inhibitor), Geldanamycin (Heat Shock Protein 90 inhibitor), cyclopamine (Hedgehog pathway inhibitor), AZD-0530 (Src and Abl inhibitor), sunitinib (angiogenesis & c-kit inhibitor)(brand name:  Sutent), PHA665752 (c-Met inhibitor), PF-2341066 (c-Met inhibitor), and PD173074 (FGFR1 & angiogenesis inhibitor).

Click here to view the project drug/preclinical compound sensitivity data chart.

The additional drugs/compounds that will be screened by researchers in the near future are metformin (insulin)(brand name:  Glucophage), AICAR (AMP inhibitor), docetaxel (platinum drug)(brand name: Taxotere), cisplatin (platinum drug)(brand name: Platinol), gefitinib (EGFR inhibitor)(brand name:  Iressa), BIBW 2992 (EGFR/HER-2 inhibitor)(brand name:  Tovok), PLX4720 (B-Raf [V600E] inhibitor), axitinib (angiogenesis inhibitor)(a/k/a AG-013736), and CI-1040 (PD184352)(MEK inhibitor).

Ovarian cancer cells dividing. (Source: ecancermedia)

Ovarian Cancer Therapy Sensitivity

Targeted molecular therapies that disrupt specific intracellular signaling pathways are increasingly used for the treatment of cancer. The rational for this approach is based on our ever increasing understanding of the genes that are causally implicated in cancer and the clinical observation that the genetic features of a cancer can be predictive of a patient’s response to targeted therapies. As noted above, the goal of the Cancer Genome Project is to discover new cancer biomarkers that define subsets of drug-sensitive patients. Towards this aim, the researchers are (i) screening a wide range of anti-cancer therapeutics against a large number of genetically characterized human cancer cell lines (including ovarian), and (ii) correlating drug sensitivity with extensive genetic data. This information can be used to determine the optimal clinical application of cancer drugs as well as the design of clinical trials involving investigational compounds being developed for the clinic.

When the researchers tested the 18 anticancer therapies against the 20 ovarian cancer cell lines, they determined that the samples were sensitive to many of the drugs/compounds. The initial results of this testing indicate that there are at least six ovarian cancer gene mutations that were sensitive to eight of the anticancer therapies, with such results rising to the level of statistical significance.  We should note that although most (but not all) of the ovarian cancer gene mutations were sensitive to several anticancer therapies, we listed below only those which were sensitive enough to be assigned a green (i.e., sensitive) heatmap code by the researchers.

Click here to download a Microsoft Excel spreadsheet showing the effect of each of the 51 genes on the 18 drugs tested. Statistically significant effects are highlighted in bold and the corresponding p values for each gene/drug interaction are displayed in an adjacent table.  A heatmap overlay for the effect of the gene on drug sensitivity was created, with the color red indicating drug resistance and the color green indicating drug sensitivity.

The mutated genes present within the 20 ovarian cancer cell line sample that were sensitive to anticancer therapies are listed below.  Again, only statistically significant sensitivities are provided.

  • CDKN2A gene mutation was sensitive to TAE684, MK-0457, paclitaxel, and PHA665752.
  • CTNNB1 gene mutation was sensitive to MK-0457.
  • ERBB2/HER-2 gene mutation was sensitive to HKI-272.
  • KRAS gene mutation was sensitive to AZ628.
  • MSH2 gene mutation was sensitive to AZD0530.
  • NRAS gene mutation was sensitive to AZ628.

We will provide you with future updates regarding additional ovarian cancer gene mutation findings, and new anticancer therapies tested, pursuant to the ongoing Cancer Genome Project.

Sources:

_____________________________________________________________

About The Genomics of Drug Sensitivity In Cancer Project

The Genomics of Drug Sensitivity In Cancer Project was launched in December 2008 with funding from a five-year Wellcome Trust strategic award. The U.K.–U.S. collaboration harnesses the experience in experimental molecular therapeutics at Massachusetts General Hospital Cancer Center and the expertise in large scale genomics, sequencing and informatics at the Wellcome Trust Sanger Institute. The scientists will use their skills in high-throughput research to test the sensitivity of 1000 cancer cell samples to hundreds of known and novel molecular anticancer treatments and correlate these responses to the genes known to be driving the cancers. The study makes use of a very large collection of genetically defined cancer cell lines to identify genetic events that predict response to cancer drugs. The results will give a catalogue of the most promising treatments or combinations of treatments for each of the cancer types based on the specific genetic alterations in these cancers. This information will then be used to empower more informative clinical trials thus aiding the use of targeted agents in the clinic and ultimately improvements in patient care.

Project leadership includes Professor Daniel Haber and Dr. Cyril Benes at Massachusetts General Hospital Cancer Center and Professor Mike Stratton and Drs. Andy Futreal and Ultan McDermott at the Wellcome Trust Sanger Institute.

About Massachusetts General Hospital

Massachusetts General Hospital (MGH), established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

About The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992 as the focus for U.K. gene sequencing efforts. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms such as mouse and zebrafish, and more than 90 pathogen genomes. In October 2005, new funding was awarded by the Wellcome Trust to enable the Institute to build on its world-class scientific achievements and exploit the wealth of genome data now available to answer important questions about health and disease. These programs are built around a Faculty of more than 30 senior researchers. The Wellcome Trust Sanger Institute is based in Hinxton, Cambridge, U.K.

About The Wellcome Trust

The Wellcome Trust is a global charity dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust’s breadth of support includes public engagement, education, and the application of research to improve health. It is independent of both political and commercial interests.

Required Cancer Genome Project Disclaimer:

The data above was obtained from the Wellcome Trust Sanger Institute Cancer Genome Project web site, http://www.sanger.ac.uk/genetics/CGP. The data is made available before scientific publication with the understanding that the Wellcom Trust Sanger Institute intends to publish the initial large-scale analysis of the dataset. This publication will include a summary detailing the curated data and its key features.  Any redistribution of the original data should carry this notice: Please ensure that you use the latest available version of the data as it is being continually updated.  If you have any questions regarding the sequence or mutation data or their use in publications, please contact cosmic@sanger.ac.uk so as to obtain any updated or additional data.  The Wellcome Trust Sanger Institute provides this data in good faith, but makes no warranty, express or implied, nor assumes any legal liability or responsibility for any purpose for which the data are used.

Yale Identifies KRAS Gene Variant in Ovarian Cancer Patients With “Non-BRCA” Family History of Breast/Ovarian Cancer

A team of Yale researchers have identified a genetic marker that can help predict the risk of developing ovarian cancer, a hard to detect and often deadly form of cancer.

A team of Yale researchers have identified a genetic marker that can help predict the risk of developing ovarian cancer, a hard to detect and often deadly form of cancer.

Reporting online in the July 20 edition of the journal Cancer Research, the team showed that a variant of the KRAS oncogene [KRAS variant allele at rs61764370] was present in 25 percent of all ovarian cancer patients. In addition, this variant was found in 61 percent of ovarian cancer patients with a family history of breast and ovarian cancer, suggesting that this marker may be a new marker of ovarian cancer risk for these families, said the researchers.

Joanne B. Weidhaas, M.D., Associate Professor of Therapeutic Radiology & Researcher, Yale Cancer Center

Frank Slack, Ph.D., Professor of Molecular, Cellular & Developmental Biology, Yale University

“For many women out there with a strong family history of ovarian cancer who previously have had no identified genetic cause for their family’s disease; this might be it for them,” said Joanne B. Weidhaas, M.D., associate professor of therapeutic radiology, researcher for the Yale Cancer Center and co-senior author of the study. “Our findings support that the KRAS-variant is an new genetic marker of ovarian cancer risk.”

Weidhaas and co-senior author Frank Slack, also of Yale, first searched for the KRAS-variant among ovarian cancer patients and found that one in four had the gene variant, compared to 6 percent of the general population. To confirm that the KRAS-variant was a genetic marker of ovarian cancer risk, they studied women with ovarian cancer who also had evidence of a hereditary breast and ovarian cancer syndrome. All these women had strong family history of cancer, but only half in their study had known genetic markers of ovarian cancer risk, namely BRCA1 or BRCA2 mutations.

Six out of 10 women without other known genetic markers of ovarian cancer risk had the KRAS-variant. Unlike women with BRCA mutations who develop ovarian cancer at a younger age, women with the KRAS-variant tend to develop cancer after menopause. Because ovarian cancer is difficult to diagnose and thus usually found at advanced stages, finding new markers of increased ovarian cancer risk is critical, note the researchers.

Genetic tests for the KRAS-variant [PreOvar™] are currently being offered to ovarian cancer patients and to women with a family history of ovarian cancer by MiraDx, a New Haven-based biotechnology company that has licensed the Yale discoveries.

The study was funded by the National Institutes of Health. Weidhaas and Slack have a financial interest in MiraDX.

Other Yale authors of the paper include: Elena Ratner, Lingeng Lu, Marta Boeke, Rachel Barnett, Sunitha Nallur, Lena J. Chin, Cory Pelletier, Rachel Blitzblau, Renata Tassi, Trupti Paranjape, Herbert Yu, Harvey Risch, Thomas Rutherford, Peter Schwartz, Alessandro Santin, Ellen Matloff, Daniel Zelterman.

Sources:

ESMO Clinical Practice Guidelines Regarding BRCA Gene Mutations, Ovarian Cancer & Supportive Cancer Care

The European Society for Medical Oncology (ESMO) is the leading European professional organization committed to advancing the specialty of medical oncology, and promoting a multidisciplinary approach to cancer treatment and care. …  The ESMO Clinical Practice Guidelines include coverage of  (i) BRCA gene mutations in breast and ovarian cancer, (ii) gynecologic tumors, and (iii) supportive cancer care …

The European Society for Medical Oncology (ESMO) is the leading European professional organization committed to advancing the specialty of medical oncology, and promoting a multidisciplinary approach to cancer treatment and care.  Since its founding in 1975 as a non-profit organization, ESMO’s mission is to support oncology professionals in providing people with cancer the most effective treatments available at the highest quality of care.

Formerly known as the ESMO Clinical Recommendations, the ESMO Clinical Practice Guidelines (CPG) are intended to provide users with a set of requirements for the highest standard of care for cancer patients. The ESMO CPG represent vital, evidence-based information including the incidence of the malignancy, diagnostic criteria, staging of disease and risk assessment, treatment plans and follow-up.

A growing number of the new guidelines were developed using large, multidisciplinary writing groups, ensuring optimal input from the oncology profession and better geographic representation.

For example, two revised guidelines address the prevention of chemotherapy- and radiotherapy–induced nausea and vomiting, developed as a result of the 3rd Perugia Consensus Conference organized by the Multinational Association of Supportive Care in Cancer (MASCC) and ESMO.

The new guidelines published this month and available online represent the first stage of a process that will include recommendations for more than 55 different clinical situations, covering almost all tumor types as well as various other topics including the therapeutic use of growth factors.

The ESMO Clinical Practice Guidelines include coverage of  (i) BRCA gene mutations in breast and ovarian cancer, (ii) gynecologic tumors, and (iii) supportive cancer care, as provided below.

Breast Cancer

Gynecologic Tumors

Supportive Care

Sources:

PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity

Olaparib (AZD2281), a new type of cancer drug known as a “PARP inhibitor,” produced promising results in patients with platinum-refractory, platinum-resistant, and platinum-sensitive ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation.

A new type of cancer drug — known as a “PARP inhibitor” — produced promising results in patients with ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation. The trial results were published online in the Journal of Clinical Oncology on April 19th.

Scientists at The Institute of Cancer Research (ICR) and The Royal Marsden Hospital, working with pharmaceutical company KuDOS Pharmaceuticals, now a subsidiary of AstraZeneca, found the experimental drug olaparib shrank or stabilized tumors in approximately half of ovarian cancer patients possessing BRCA1 or BRCA2 mutations.

The five-year survival rate for ovarian cancer is just 40 per cent as the majority of patients are diagnosed with an advanced form of the disease. Most patients initially respond well to radical surgery and platinum and taxane-based chemotherapy, but relapse after an average of 18 months. Subsequent treatments generally become less effective as patients build up resistance.

Professor Stan Kaye, Head of Section of Medicine, Institute of Cancer Research; Head of Drug Development Unit, The Royal Marsden Hospital; and Cancer Research UK-funded scientist

“There is an urgent need to find new drugs for women diagnosed with ovarian cancer,” says Professor Stan Kaye, Head of the Section of Medicine at the ICR and Head of the Drug Development Unit at The Royal Marsden Hospital and a Cancer Research UK-funded scientist. “Olaparib is still in early-stage testing but the results so far are very encouraging. These findings raise the possibility that carefully selected patients in future may well be offered olaparib as an alternative to chemotherapy during the course of their treatment.”

Between 2005 and 2008, about 50 women with confirmed or suspected BRCA1 or BRCA2 mutations began treatment with olaparib in a dose escalation and single-stage expansion of a Phase I trial. Twenty patients responded with their tumors shrinking or with significant falls in their ovarian cancer marker CA125, or both. The disease also stabilized in three patients. The drug was effective for an average of seven months. Notably, several patients are still taking olaparib (for nearly two years). Drug side-effects were generally mild, especially when compared to current chemotherapy treatments.

Olaparib is a new type of drug known as a PARP inhibitor that works by turning a tumor’s specific genetic defect against itself. In susceptible cells, olaparib prevents the repair of naturally occurring breaks in DNA, which healthy cells are able to repair. Susceptible cancer cells – those with an existing defect in a DNA repair pathway caused by a mutation in the BRCA1 or BRCA2 genes – are unable to repair themselves, and therefore, die.

Platinum-based chemotherapy, particularly carboplatin, is one of the main treatments used for ovarian cancer. When this treatment ceases to be effective, theoretically, olaparib might be less effective too, so the ICR scientists examined whether olaparib would still benefit patients whose response to previous platinum-based drugs was limited. Finding new drugs to treat these “platinum-resistant” ovarian cancer patients (those who relapsed within six months of previous platinum therapy) is a particularly high priority as they have a lower chance of benefiting from re-treatment with chemotherapy and a poorer prognosis.

The research team found that the clinical benefit rate with olaparib was indeed higher — 70% — among patients with “platinum-sensitive disease” (disease recurrence more than six months after previous platinum therapy). Crucially, however, the clinical benefit rate was still 46% in platinum resistant patients.

ICR Study Findings:

  • 50 patients participated in the study (13 had platinum-sensitive disease, 24 had platinum-resistant disease, and 13 had platinum-refractory disease (according to platinum-free interval).
  • 20 patients (40%) achieved complete or partial responses under RECIST (Response Evaluation Criteria in Solid Tumors) criteria and/or tumor marker (CA125) responses.
  • Overall clinical benefit rate (complete response + partial response + stable disease) = 46%.
  • Median response duration was 28 weeks.
  • There was a significant association between the clinical benefit rate and platinum-free interval across the platinum-sensitive, resistant, and refractory patient subgroups (69%, 45%, and 23%, respectively).
  • Analyses indicated associations between platinum sensitivity and extent of olaparib response.
  • CONCLUSION: Olaparib has antitumor activity in BRCA1/2 mutation ovarian cancer, which is associated with platinum sensitivity.

Up to 15 per cent of breast and ovarian cancers have known BRCA1 or BRCA2 mutations on blood testing and, importantly, laboratory data strongly suggests that olaparib may also be effective in cancers linked to DNA repair defects not caused by BRCA1 and BRCA2 mutations. This could apply in about half the cases of the most common histological type of ovarian cancer.

“We have good reason for thinking that the benefit seen with olaparib in BRCA mutation-linked ovarian cancer may well extend to a broader population of patients with this disease,” says Professor Kaye.

Randomised trials of olaparib – in which some patients receive the drug and others a placebo – are underway and results will be available later this year.

KuDOS Pharmaceuticals (a wholly owned subsidiary of AstraZeneca) was the major funder of the trial, along with Cancer Research UK and the National Institute for Health Research. Olaparib was identified and developed at KuDOS Pharmaceuticals and subsequently at AstraZeneca.

PARP Inhibitor Clinical Trials:

To view a list of open ovarian cancer clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open solid tumor clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open ovarian cancer clinical trials that are testing various PARP inhibitors, click here.

To view a list of open solid tumor clinical trials that are testing various PARP inhibitors, click here.

About The Institute of Cancer Research (ICR)

* The ICR is Europe’s leading cancer research centre.

* The ICR has been ranked the UK’s top academic research centre, based on the results of the Higher Education Funding Council’s Research Assessment Exercise.

* The ICR works closely with partner The Royal Marsden NHS Foundation Trust to ensure patients immediately benefit from new research. Together the two organisations form the largest comprehensive cancer centre in Europe.

* The ICR has charitable status and relies on voluntary income, spending 95 pence in every pound of total income directly on research.

* As a college of the University of London, the ICR also provides postgraduate higher education of international distinction.

* Over its 100-year history, the ICR’s achievements include identifying the potential link between smoking and lung cancer which was subsequently confirmed, discovering that DNA damage is the basic cause of cancer and isolating more cancer-related genes than any other organization in the world.

* The ICR is home to the world’s leading academic drug development team. Several important anti-cancer drugs used worldwide were synthesised at the ICR and it has discovered an average of two preclinical candidates each year over the past five years.

For more information visit www.icr.ac.uk.

About The Royal Marsden Hospital

The Royal Marsden opened its doors in 1851 as the world’s first hospital dedicated to cancer treatment, research and education. Today, together with its academic partner, The Institute of Cancer Research, it is the largest and most comprehensive cancer centre in Europe treating over 40,000 patients every year. It is a centre of excellence, and the only NHS Trust to achieve the highest possible ranking in the Healthcare Commission’s Annual Health Check for the third year in a row. Since 2004, the hospital’s charity, The Royal Marsden Cancer Campaign, has helped raise over £43 million to build theatres, diagnostic centres, and drug development units. Prince William became President of The Royal Marsden in 2007, following a long royal connection with the hospital.

For more information, visit www.royalmarsden.nhs.uk

About Cancer Research UK

* Cancer Research UK is the world’s leading charity dedicated to beating cancer through research.

* The charity’s groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.

* Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last thirty years.

* Cancer Research UK supports research into all aspects of cancer through the work of more than 4,800 scientists, doctors and nurses.

* Together with its partners and supporters, Cancer Research UK’s vision is to beat cancer.

For further information about Cancer Research UK’s work or to find out how to support the charity, please call 020 7121 6699 or visit www.cancerresearchuk.org

About Experimental Cancer Medicine Centre (ECMC)

Experimental Cancer Medicine Centre (ECMC) status has been awarded to 19 centres in the UK that are specialist centres conducting research into new cancer treatments. The aim is to bring together cancer doctors, research nurses and lab scientists to make clinical trials of new treatments quicker and easier. The ECMC initiative is funded by Cancer Research UK and the Departments of Health of England, Scotland, Wales and Northern Ireland. Together they are giving a total of £35 million pounds over five years to the 19 centres. The centres will use this money to run trials of new and experimental treatments. They will also analyse thousands of blood and tissue samples (biopsies) to help find out more about how treatments work and what happens to cancer cells.

Sources:


Increased Ovarian Cancer Metastases Identified In Women With BRCA Gene Mutations; May Shed Light on New Treatment Approach

U.K. researchers have found that patients with hereditary ovarian cancer – whose tumors are caused by faulty BRCA1 or BRCA2 genes – are more likely to experience metastases of the liver, lung, spleen, and viscera. … [T]he researchers suggest that ovarian cancer patients whose tumors spread to the solid organs … should be tested for the faulty genes – BRCA1 and BRCA2 – to ensure they are given the most appropriate treatment.

Dr. Charlie Gourley, Acting Head, Medical Oncology, University of Edinburgh Cancer Research Centre

U.K. researchers have found that patients with hereditary ovarian cancer – whose tumors are caused by faulty BRCA1 or BRCA2 genes – are more likely to experience metastases of the liver, lungs, spleen, and viscera. This is despite the fact that their overall prognosis is better than other ovarian cancer patients.  The research is published in the April 20th online edition of the Journal of Clinical Oncology.

In the study, researchers discovered that the percentage of women with BRCA1 or BRCA2 gene mutations who experienced visceral, liver, lung, and splenic metastases were 58%, 42%, 16%, and 32% , respectively, as compared with 5%, 0%, 0%, and 3%, respectively, in non-BRCA gene deficient women.  The researchers note that sporadic (i.e., non-hereditary) ovarian tumors tend to remain within the lining of the abdomen and pelvis.

Based upon the study findings, the researchers suggest that ovarian cancer patients whose tumors spread to the solid organs such as the liver, lungs, and spleen should be tested for the faulty genes – BRCA1 and BRCA2 – to ensure they are given the most appropriate treatment.  For example, patients with hereditary tumors, which account for 10 per cent of ovarian cancers, may be suitable for trials of a new drug called olaparib [AZD2281], which has fewer side-effects than normal cancer treatments. Olaparib belongs to a class of drugs known as “PARP” (Poly (ADP-ribose) polymerase) inhibitors.

Researchers say the study findings will improve the detection of faulty BRCA genes, as current criteria for genetic testing may miss as many as two-thirds of ovarian cancer patients carrying the mutated genes.  Improving the identification of BRCA mutations will help relatives of ovarian cancer patients, who may themselves be at increased risk of developing hereditary ovarian cancer.

Dr. Charlie Gourley, who led the research at the University of Edinburgh, said:

“We are beginning to understand the importance of tailoring cancer treatments according to the specifics of each patient’s tumor. These findings demonstrate that tumors which arise because of defects in the BRCA1 or BRCA2 genes behave differently to other ovarian cancers. This information should also help us to identify the patients carrying these genetic mutations, give them the most effective treatment for their cancer and offer their relatives genetic counselling.”

Sources: