Gene Transfer Therapy Destroys Tumors in Chronic Lymphocytic Leukemia Patients; Holds Promise For Ovarian Cancer

Penn researchers have shown sustained remissions of up to a year among a small group of advanced chronic lymphocytic leukemia (CLL) patients treated with genetically engineered versions of their own T-cells. This genetically-modified “serial killer” T-cell approach could provide a tumor-attack roadmap for the treatment of  ovarian, lung, and pancreatic cancer, as well as myeloma and melanoma.

In a cancer treatment breakthrough 20 years in the making, researchers from the University of Pennsylvania’s Abramson Cancer Center and Perelman School of Medicine have shown sustained remissions of up to a year among a small group of advanced chronic lymphocytic leukemia (CLL) patients treated with genetically engineered versions of their own T-cells.

The protocol involves removing patients’ cells and modifying them in Penn’s vaccine production facility, followed by the infusion of the new cells back into the patient’s body following chemotherapy. This approach also represents a potential tumor-attack roadmap for the treatment of other cancers including those of the lung and ovaries and myeloma and melanoma. The findings, published simultaneously yesterday in the New England Journal of Medicine (NEJM) and Science Translational Medicine, are the first demonstration of the use of gene transfer therapy to create “serial killer” T-cells aimed at cancerous tumors.

Carl June, M.D., Ph.D., Principal Investigator; Director, Translational Research & Professor of Pathology & Laboratory Medicine, Abramson Cancer Center, University of Pennsylvania

David Porter, M.D., Co-Principal Investigator; Director, Blood & Marrow Transplantation & Professor of Medicine, Abramson Cancer Center, University of Pennsylvania

“Within three weeks, the tumors had been blown away, in a way that was much more violent than we ever expected,” said senior author Carl June, M.D., Ph.D., director of Translational Research and a professor of Pathology and Laboratory Medicine in the Abramson Cancer Center, who led the work. “It worked much better than we thought it would.”

The results of the pilot trial of three patients are a stark contrast to existing therapies for CLL. The patients involved in the new study had few treatment options. The only potential curative therapy would have involved a bone marrow transplant, a procedure which requires a lengthy hospitalization and carries at least a 20 percent mortality risk — and even then offers only about a 50 percent chance of a cure, at best.

“Most of what I do is treat patients with no other options, with a very, very risky therapy with the intent to cure them,” says co-principal investigator David Porter, M.D., Professor of Medicine and Director of Blood and Marrow Transplantation. “This approach has the potential to do the same thing, but in a safer manner.”

Secret Ingredients

Dr. June thinks there were several “secret ingredients” that made the difference between the lackluster results that have been seen in previous trials with modified T cells and the remarkable responses seen in the current trial. The details of the new cancer immunotherapy are detailed in Science Translational Medicine.

After removing the patients’ cells, the team reprogrammed them to attack tumor cells by genetically modifying them using a lentivirus vector. The vector encodes an antibody-like protein, called a chimeric antigen receptor (CAR), which is expressed on the surface of the T-cells and designed to bind to a protein called CD19 (Cluster of Differentiation 19).

Once the T-cells start expressing the CAR, they focus all of their killing activity on cells that express CD19, which includes CLL tumor cells and normal B-cells. All of the other cells in the patient that do not express CD19 are ignored by the modified T-cells, which limits side effects typically experienced during standard therapies.

The team engineered a signaling molecule into the part of the CAR that resides inside the cell. When it binds to CD19, initiating the cancer cell death, it also tells the cell to produce cytokines that trigger other T-cells to multiply — building a bigger and bigger army until all of the target cells in the tumor are destroyed.

Vodpod videos no longer available.

Serial Killers

“We saw at least a 1000-fold increase in the number of modified T-cells in each of the patients. Drugs don’t do that,” June says. “In addition to an extensive capacity for self-replication, the infused T-cells are serial killers. On average, each infused T-cell led to the killing of thousands of tumor cells – and overall, destroyed at least two pounds of tumor in each patient.”

The importance of the T-cell self-replication is illustrated in the New England Journal of Medicine paper, which describes the response of one patient, a 64-year old man. Prior to his T-cell treatment, his blood and marrow were replete with tumor cells. For the first two weeks after treatment, nothing seemed to change. Then on day 14, the patient began experiencing chills, nausea, and increasing fever, among other symptoms. Tests during that time showed an enormous increase in the number of T-cells in his blood that led to tumor lysis syndrome, which occurs when a large number of cancer cells die all at once.

By day 28, the patient had recovered from the tumor lysis syndrome –– and his blood and marrow showed no evidence of leukemia.

“This massive killing of tumor is a direct proof of principle of the concept,” Porter says.

The Penn team pioneered the use of the HIV-derived vector in a clinical trial in 2003 in which they treated HIV patients with an antisense version of the virus. That trial demonstrated the safety of the lentiviral vector used in the present work.

The cell culture methods used in this trial reawaken T-cells that have been suppressed by the leukemia and stimulate the generation of so-called “memory” T-cells, which the team hopes will provide ongoing protection against recurrence. Although long-term viability of the treatment is unknown, the doctors have found evidence that months after infusion, the new cells had multiplied and were capable of continuing their “seek-and-destroy” mission against cancerous cells throughout the patients’ bodies.

Moving forward, the team plans to test the same CD19 CAR construct in patients with other types of CD19-positive tumors, including non-Hodgkin’s lymphoma and acute lymphocytic leukemia. They also plan to study the approach in pediatric leukemia patients who have failed standard therapy. Additionally, the team has engineered a CAR vector that binds to mesothelin, a protein expressed on the surface of mesothelioma cancer cells, as well as on ovarian and pancreatic cancer cells.

In addition to June and Porter, co-authors on the NEJM paper include Bruce Levine, Ph.D., Michael Kalos, Ph.D., and Adam Bagg MB, BCh, all from Penn Medicine. Michael Kalos and Bruce Levine are co-first authors on the Science Translational Medicine paper. Other co-authors include Carl June, M.D., Ph.D., David Porter, M.D., Sharyn Katz, M.D., MTR, and Adam Bagg MB, BCh, from Penn Medicine, and Stephan Grupp, M.D., Ph.D., from the Children’s Hospital of Philadelphia.

The work was supported by the Alliance for Cancer Gene Therapy, a foundation started by Penn graduates Barbara and Edward Netter, to promote gene therapy research to treat cancer, and the Leukemia & Lymphoma Society.

Accompanying NEJM Editorial

In an accompanying NEJM editorial, Walter J. Urba, M.D., Ph.D. and Dan L. Longo, M.D. raise several important consideration in regard to the genetically-modified, serial killer T-cell therapy discussed above.

First, the editorial authors note that chimeric antigen receptors (or CARS) have theoretical advantages over other T-cell–based therapies, including: (i) use of the patient’s own cells, which avoids the risk of graft-versus-host disease; (ii) the ability to create CARs quickly; and (iii) use of the same CAR for multiple patients.

While noting the remarkable clinical outcome of the 64-year old male CLL patient described above, the editorial authors note that in addition to tumor lysis syndrome, the patient experienced B-cell depletion and hypogammaglobulinemia. Although these conditions may not create a major problem in patients with CLL, the authors state that the persistence of activated T-cells, memory T-cells, or both could pose substantial problems in other tumor types.

According to the editorial authors, both toxic effects to the target organ and also “on-target, but off-organ” toxic effects have been observed by other researchers in the past because of unanticipated cross-reactive target antigens.

While toxicity may become more of a problem as more potent second- and third-generation CARs are used in patients with different tumor types, the authors explain that additional safety measure may help offset that risk. The safety measures highlighted in the editorial include: (i) the infusion of a lower number of T-cells, (ii) the use of immunosuppressive agents, and (iii) the introduction of an inducible “suicide signal” to kill the cells when they are creating mischief.

In connection with the third safety measured provided above, the authors state that a novel, non-immunogenic, inducible caspase 9suicide gene” has already been developed. Nevertheless, the authors warn that the suicide gene strategy may not have time to work properly because the deaths from toxic effects reported in the past have been severe and occurred within hours after administration of the gene-transfected cells.

The editorial authors conclude that only with the more widespread clinical use of CAR T-cells will researchers learn whether the results reported by Porter et al. represent a true advancement toward a clinically applicable and effective therapy, or alternatively, another promising strategy that runs into an insurmountable barrier which is difficult to overcome.

About Penn Medicine

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

About the University of Pennsylvania Perelman School of Medicine

Penn’s Perelman School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools and among the top 10 schools for primary care. The school is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

About the University of Pennsylvania Health System

The University of Pennsylvania Health System’s patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation’s top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation’s first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Sources:

  • Urba WJ & Longo DL. Redirecting T CellsN Engl J Med Editorial. Published online August 10, 2011 (10.1056/NEJMe1106965).

2011 ASCO: Women with BRCA Gene Mutations Can Take Hormone-Replacement Therapy Safely After Ovary Removal

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania which will be presented on Monday, June 6 during the American Society for Clinical Oncology’s annual meeting. Results of the prospective study indicated that women with BRCA mutations who had their ovaries removed and took short-term HRT had a decrease in the risk of developing breast cancer.

Research has shown that in women who carry the BRCA gene mutations, the single most powerful risk-reduction strategy is to have their ovaries surgically removed by their mid-30s or early 40s. The decrease in cancer risk from ovary removal comes at the cost of early menopause and menopausal symptoms including hot flashes, mood swings, sleep disturbances and vaginal dryness — quality-of-life issues that may cause some women to delay or avoid the procedure.

Lead study author Susan M. Domchek, M.D., Associate Professor, Divison of Hematology-Oncology & Director, Cancer Risk Evaluation Program, Abramson Cancer Center, University of Pennsylvania

“Women with BRCA1/2 mutations should have their ovaries removed following child-bearing because this is the single best intervention to improve survival,” says lead author Susan M. Domchek, M.D., an associate professor in the division of Hematology-Oncology and director of the Cancer Risk Evaluation Program at Penn’s Abramson Cancer Center. “It is unfortunate to have women choose not to have this surgery because they are worried about menopausal symptoms and are told they can’t take HRT. Our data say that is not the case — these drugs do not increase their risk of breast cancer.”

Senior author Timothy R. Rebbeck, Ph.D., associate director of population science at the Abramson Cancer Center, notes that BRCA carriers may worry — based on other studies conducted in the general population showing a link between HRT and elevated cancer risk — that taking HRT may negate the effects of the surgery on their breast cancer risk. The message he hopes doctors will now give to women is clear: “If you need it, you can take short-term HRT. It doesn’t erase the effects of the oophorectomy.”

In the current study, Domchek, Rebbeck, and colleagues followed 795 women with BRCA1 mutations and 504 women with BRCA2 mutations who have not had cancer enrolled in the PROSE consortium database who underwent prophylactic oophorectomy, divided into groups of those who took HRT and those who did not. Women who underwent prophylactic oophorectomy had a lower risk of breast cancer than those who did not, with 14 percent of the women who took HRT after surgery developing breast cancer compared to 12 percent of the women who did not take HRT after surgery. The difference was not statistically significant.

Domchek says some of the confusion about the role of HRT in cancer risk elevation comes from the fact that the risks and benefits associated with HRT depend on the population of women studied. In this group of women — who have BRCA1/2 mutations and who have had their ovaries removed while they are quite young — HRT should be discussed and considered an option for treating menopausal symptoms. “People want to make hormone replacement therapy evil, so they can say ‘Don’t do it,'” she says. “But there isn’t one simple answer. The devil is in the details of the studies.”

By contrast, Penn researchers and their collaborators in the PROSE consortium have shown definitively that oophorectomy reduces ovarian and breast cancer incidence in these women, and reduces their mortality due to those cancers. But paying attention to the role that hormone depletion following preventive oophorectomy plays in women’s future health is also important.

“We know for sure that using HRT will mitigate menopausal symptoms, and we have pretty good evidence that it will help bone health,” she says. “Women need to be aware that going into very early menopause does increase their risk of bone problems and cardiovascular problems. And even if they aren’t going to take HRT, they need to be very attentive to monitoring for those issues. But they also need to know that HRT is an option for them and to discuss it with their doctors and other caregivers.”

About Penn Medicine

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise. Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

About the University of Pennsylvania Perelman School of Medicine

Penn’s Perelman School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

About the University of Pennsylvania Health System

The University of Pennsylvania Health System’s patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation’s top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation’s first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Sources:

Novel Targeted Gene Therapies Use Diphtheria Toxin To Fight Ovarian Cancer; One Clinical Trial Underway

Two separate research teams reported promising results last week based upon preclinical studies involving the use of diphtheria toxin to fight ovarian cancer. … A targeted gene therapy was utilized in both studies, wherein a gene fragment capable of producing diptheria toxin was combined with a nanoparticle which was targeted against a unique or overexpressed genetic characteristic of the ovarian cancer tumor cells. Both research teams reported significant reduction in ovarian cancer tumor mass and extended survival for the treated mice. Based upon these findings, one research team already announced the opening of a Phase I/II clinical trial which will test the novel therapy on patients with advanced stage ovarian cancer.

Targeted Gene Therapy In the Fight Against Ovarian Cancer

The peritoneal cavity is a common site of ovarian cancer and accompanying ascites caused by the disease. Ascites is an abnormal buildup of fluid in the peritoneal cavity that causes swelling.  Malignant tumor cells may be found in the ascites fluid in connection with late stage ovarian cancer.  Massive ascites and the related abdominal distention can cause anorexia, nausea, vomiting and respiratory difficulties, and negatively impact the patient’s quality of life. Ovarian cancer patients frequently experience disease involvement of the pelvic and retroperitoneal lymph nodes as well. The standard primary treatment of patients with advanced stage ovarian cancer is cytoreductive surgery followed by platinum drug and taxane drug doublet chemotherapy. Despite this aggressive approach, there is a high rate of disease recurrence. Although discovery of several other active nonplatinum cytotoxic agents has improved outcome, long-term survival rates are low. Success of traditional chemotherapy has been limited by drug resistance and lack of specificity with respect to disease formation and progression. Thus, novel “targeted” ovarian cancer therapies that achieve improved long-term disease control with lower toxicity are desperately needed.

A so-called “targeted therapy” utilizes drugs or other medically manufactured substances (e.g., small molecule drugs or monoclonal antibodies) to block the growth and spread of cancer by interfering with specific molecules involved in cancer tumor growth and progression.  By identifying and selectively focusing upon molecular and cellular changes or unique genetic characteristics that are specific to cancer, targeted cancer therapies may be more effective than other types of treatment, including chemotherapy, and less harmful to normal cells.

It is possible for a targeted therapy to incorporate a gene therapy. Gene therapy is an experimental treatment that involves the introduction of genetic material (DNA or RNA) into a human cell to fight a disease such as cancer.  When both therapeutic approaches are combined by researchers, a “targeted gene therapy” is the result.  A targeted gene therapy is an attractive approach to controlling or killing human cancer cells only if the therapy can selectively identify and exploit the genetic and epigenetic alterations in cancer cells, without harming normal cells that do not possess such alternations.

Two separate research groups reported promising results last week based upon preclinical studies involving the use of diphtheria toxin to fight ovarian cancer.  The toxin is produced by a deadly bacterium (Corynebacterium diphtheriae).  A targeted gene therapy was utilized in both studies, wherein a gene fragment capable of producing diptheria toxin was combined with a nanoparticle which was targeted against a unique or overexpressed genetic characteristic of the ovarian cancer tumor cells.  Both research teams reported significant reduction in ovarian cancer tumor mass and extended survival for the treated mice. Based upon these findings, one research team already announced the opening of a Phase I/II clinical trial which will test the novel therapy on patients with advanced stage ovarian cancer.

MIT-Lankenau Institute Researchers Use Diphtheria Toxin Gene Therapy To Target Overexpression Of The MSLN & HE4 Ovarian Cancer Genes.

anderson

Daniel Anderson, Ph.D., Research Associate, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology

The first study, which appears in the August 1 issue of the journal Cancer Research, was conducted by a team of researchers from the Massachusetts Institute of Technology (MIT) and the Lankenau Institute of Medical Research (Lankenau Institute). In this study, the researchers used a nanoparticle as a delivery vehicle (or vector) for DNA that encodes a diphtheria toxin suicide protein (DT-A).  The novel nanoparticles are made with positively charged, biodegradable polymers known as poly(beta-amino esters). When mixed together, these polymers can spontaneously assemble with DNA to form nanoparticles. The polymer-DNA nanoparticle can deliver functional DNA when injected into or near the targeted tissue.

The nanoparticle carrying the DT-A is designed to target overexpression of two genes (mesothelin (MSLN) and HE4 (or WFDC2)) that are highly active in ovarian tumor cells, but not in normal cells. Once inside an ovarian cancer tumor cell, the DT-A disrupts the tumor cell’s ability to manufacture critical life sustaining proteins, thereby causing cell death.  Accordingly, the choice of the DT-A fragment of a diptheria toxin gene ensures high ovarian cancer cell killing activity.  It also avoids unintended toxicity to normal cells because the DT-A released from destroyed ovarian cancer cells is not able to enter normal neighboring tissue cells in the absence of the DT-B fragment which was excluded from the original nanoparticle delivery system or vector.

As part of this study, researchers administered DT-A nanoparticles directly into the peritoneal cavity – which encases abdominal organs such as the stomach, liver, spleen, ovaries and uterus – of mice xenografted with primary and metastatic ovarian tumors.  Ovarian cancer is known to initially spread throughout the peritoneal cavity, and current therapeutic approaches in humans include direct injection into the peritoneal space, thereby targeting the therapy to the ovaries and nearby tissues where tumors may have spread.

“… [The researchers] discovered that the intraperitoneal (IP) administration of DT-A nanoparticles resulted in a significant reduction in ovarian tumor mass and extended survival for the treated mice.  The researchers also found that the targeted gene-therapy treatment was as effective, and in some cases more effective, than the traditional chemotherapy combination of cisplatin and paclitaxel. …”

langerrobert

Robert S. Langer is the David H. Koch Institute for Integrative Cancer Research Professor (there are 14 Institute Professors at MIT; being an Institute Professor is the highest honor that can be awarded to a faculty member). Dr. Langer has written approximately 1,050 articles. He also has approximately 750 issued and pending patents worldwide. Dr. Langer’s patents have been licensed or sublicensed to over 220 pharmaceutical, chemical, biotechnology and medical device companies. He is the most cited engineer in history.

Sawicki

Janet Sawicki, Ph.D., Professor, Lankenau Institute of Medical Research. Dr. Sawicki also serves as an Associate Professor at the Kimmel Cancer Center of Thomas Jefferson University. Her ovarian cancer research is funded by the National Institutes of Health, the U.S. Department of Defense, the Sandy Rollman Foundation, the Teal Ribbon Ovarian Cancer Foundation, and the Kaleidoscope of Hope Foundation.

Daniel Anderson, Ph.D., research associate in the David H. Koch Institute for Integrative Cancer Research at MIT and a senior author of the paper, and others from MIT, including Institute Professor Robert Langer, along with researchers from the Lankenau Institute, led by Professor Janet Sawicki, discovered that the intraperitoneal (IP) administration of DT-A nanoparticles resulted in a significant reduction in ovarian tumor mass and extended survival for the treated mice.  The researchers also found that the targeted gene-therapy treatment was as effective, and in some cases more effective, than the traditional chemotherapy combination of cisplatin and paclitaxel. Furthermore, the novel therapy did not have the toxic side effects of chemotherapy because the diptheria toxin gene is engineered to function in ovarian cells but is inactive in normal cell types.

Based upon these finding, the MIT and Lankenau Institute researchers concluded that IP administration of DT-A nanoparticles, combined with designed targeting of those nanoparticles against ovarian tumor cell gene (MSLN & HE4) expression, holds promise as an effective therapy for advanced-stage ovarian cancer. According to Anderson, human clinical trials could start, after some additional preclinical studies, in about 1 to 2 years.  Currently ovarian cancer patients undergo surgery followed by chemotherapy. In many cases, the cancer returns after treatment.  Disease recurrence is problematic because there are no curative therapies for advanced-stage tumors.

For several years, the MIT-Lankenau Institute team worked to develop the DT-A nanoparticles as an alternative to viruses, which are associated with safety risks. In addition to ovarian cancer, these nanoparticles have demonstrated treatment potential for a variety of diseases, including prostate cancer and viral infection. “I’m so pleased that our research on drug delivery and novel materials can potentially contribute to the treatment of ovarian cancer,” Langer said. In future studies, the team plans to examine the effectiveness of nanoparticle-delivered diphtheria toxin genes in other types of cancer, including brain, lung and liver cancers.

Other MIT authors of the paper are recent MIT Ph.D. recipients Gregory Zugates and Jordan Green (now a professor at John’s Hopkins University), and technician Naushad Hossain. The research was funded by the Department of Defense and the National Institutes of Health.

Israeli Researchers Use Diphtheria Toxin Gene Therapy To Target Overexpression Of The H19 Ovarian Cancer Gene.

The second study was conducted by Israeli researchers and was published August 6 online ahead of print in the Journal of Translational Medicine.

In the provisional study report, the researchers note that based upon earlier studies from their team and others, the H19 gene has emerged as a candidate for cancer gene therapy. The H19 gene is expressed at substantial levels in ovarian cancer tumor cells, but is nearly undetectable in surrounding normal tissue cells.  Although the Israeli research team acknowledges that the exact function of H19 is the subject of past debate, it notes that recent data suggests a role for H19 in promoting cancer progression, angiogenesis and metastasis.

As a first step, Israeli researchers tested H19 gene expression in ovarian cancer cells obtained from the ascites fluid of 24 patients, and established that H19 expression levels were detected in 90% of the tested patients. Of those patients with positive H19 expression, 76% showed a moderate or high level of expression, while 24% showed a low level of expression.

Next, the researchers created a DT-A nanoparticle similar to the one created by the MIT/Lankenau research team as described above, except the Israeli nanoparticle was designed to target H19 overexpression within ovarian cancer cells.  The therapeutic effect of the DT-A/H19 nanoparticles was first tested in vitro against various ovarian cancer cell lines and cells obtained from patient ascites fluid.  The researchers determined that the DT-A/H19 nanoparticle therapy caused ovarian cancer cell death.  The therapeutic effect of the DT-A nanoparticles was tested in vivo by injecting the DT-A nanoparticles into mice xenografted with ovarian cancer tumors. The researchers estimate that the DT-A nanoparticle therapy reduced ovarian cancer tumor growth in the treated mice by 40%.

Based upon these finding, the researchers note that although the study report issued is provisonal, it is their working hypothesis that intraperitoneal administration of DT-A/H19 nanoparticles holds the potential to (1) reach ascites tumor cells, (2) deliver its intracellular toxin without targeting normal tissue cells, and (3) reduce tumor burden & fluid accumulation; and therefore, improve the patient’s quality of life, and hopefully, prolong her survival.

  • DT-A/H19 Nanoparticle Therapy Administered To An Israeli Patient On A Compassionate Use Trial Basis

In the provisional study report, the researchers state that the targeted gene therapy was administered to an Israeli patient with advanced, recurrent ovarian cancer, who qualified for compassionate use treatment under Israeli regulatory rules.  Specifically, the patient’s intraperitoneal ovarian cancer metastases and ascites were treated with the DT-A/H19 nanoparticle therapy after the failure of conventional chemotherapy. The results of the single patient compassionate use trial suggest that the drug caused no serious adverse events at any drug dosage level.  Moreover, the patient experienced (1) a 50% decrease in serum cancer marker protein CA-125, (2) a significant decrease in the number of cancerous cells in the ascites, and (3) a clinical improvement as reported by her doctors.  It is reported that the patient’s quality of life increased during the course of treatment and her condition continues to be stable, with no new cancerous growths.

  • Phase I/II Clinical Trial To Test DT-A/H19 Nanoparticle Therapy (BC-819) In the U.S. & Israel

The DT-A/H19 nanoparticle therapy is being developed commercially by BioCancell Therapeutics, Inc (BioCancell) Recently, BioCancell announced the opening of a clinical trial to test the DT-A/H19 nanoparticle therapy (also referred to as BC-819) in patients with advanced stage ovarian cancer.  The clinical trial is entitled, Phase 1/2a, Dose-Escalation, Safety, Pharmacokinetic, and Preliminary Efficacy Study of Intraperitoneal Administration of DTA-H19 in Subjects With Advanced Stage Ovarian Cancer, and the trial investigators are recruiting patients in the U.S. and Israel as indicated below.

University of Pennsylvania Medical Center [Abramson Cancer Center] (Recruiting)
Philadelphia, Pennsylvania, United States, 19104-6142
Contact: Lana E. Kandalaft, Pharm.D, PhD – 215-537-4782 (lknd@mail.med.upenn.edu)
Principal Investigator: George Coukos, M.D., Ph.D.

Massey Cancer Center (Not yet recruiting)
Richmond, Virginia, United States, 23298-0037
Contact: Jane W. Baggett, RN 804-628-2360 (jbaggett@mcvh-vcu.edu)
Principal Investigator: Cecelia H. Boardman, M.D.

The Edith Wolfson Medical Center (Recruiting)
Holon, Israel
Contact: Pnina Nir (972)-52-8445143 (pninanir@wolfson.health.gov.il)
Principal Investigator: Tally Levy, M.D.

Hadassah University Hospital (Recruiting)
Jerusalem, Israel
Contact: Zoya Bezalel (972)-2-6776725 (zoyab@hadassah.org.il)
Principal Investigator: David Edelman, MD

Meir Hospital (Recruiting)
Kfar Saba, Israel
Contact: Tal Naderi 09-7472213 (Ta.INadiri@clalit.org.il)
Principal Investigator: Ami Fishman, MD

In the provisional study report, the Israeli researchers discuss the importance of collecting data regarding the correlation between the level of ovarian cancer cell H19 expression and the efficacy of the treatment as part of the clinical trial discussed above.  Based upon accrued future clinical trial data, the researchers believe that they will be able to identify in advance patients that will respond to this novel therapy, as well as non-responders who are resistant to all known therapies, thereby avoiding treatment failure and unnecessary suffering and cost.

References:

Stand Up To Cancer Funded Research Dream Team Takes Aim At Women’s Cancers

Stand Up To Cancer (SU2C), the Entertainment Industry Foundation’s charitable initiative supporting groundbreaking research aimed at getting new cancer treatments to patients in an accelerated timeframe, has reached a significant milestone, awarding the first round of three-year grants — that total $73.6 million — to five multi-disciplinary, multi-institutional research Dream Teams. … Each Dream Team’s project, funded for three years pending satisfactory achievement of stated milestones, is “translational” in nature, geared toward moving science from “bench to bedside” where it can benefit patients as quickly as possible. …

A Dream Team of leading cancer researchers will accelerate development of drugs to attack a mutated [PI3K] molecular pathway that fuels endometrial, breast and ovarian cancers, funded by a three-year $15 million grant awarded today by [SU2C] … Genetic aberrations in the network, known as the PI3K pathway, are found in half of all breast cancer patients, 60 percent of all cases of endometrial cancer and 20 percent of ovarian cancer patients. Other cancers that include a mutationally activated PI3K pathway include melanoma, colon and prostate cancers, brain tumors, and leukemia.

Continue reading

Mesothelin – A Potential New Target For Ovarian Cancer ImmunoTherapy

Researchers have generated altered immune cells that are able to shrink, and in some cases eradicate, large tumors in mice. The immune cells target mesothelin, a protein that is highly expressed, or translated in large amounts from the mesothelin gene, on the surface of several types of cancer cells. The approach, developed by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and at the University of Pennsylvania School of Medicine, shows promise in the development of immunotherapies for certain tumors. The study appeared online the week of Feb. 9, 2009, in the Proceedings of the National Academy of Sciences. In a more recent study, appearing online May 5, 2009, in Molecular Cancer Therapeutics, NCI researchers developed a human antibody against mesothelin that shows potential, in laboratory experiments, for cancer treatment and diagnosis.

Continue reading