Dana Farber Webchat: The Latest in Ovarian Cancer Treatment & Research

The latest developments in ovarian cancer treatment and research are addressed in the video below via a Dana-Farber Cancer Institute webchat that was conducted on September 16, 2014.

The Susan F. Smith Center for Women’s Cancers at the Dana-Farber Cancer Institute conducted a live video webchat panel with Ursula Matulonis, M.D., medical director of the Gynecologic Oncology Program, and gynecologic oncologists Panos Konstantinopoulos, M.D., Ph.D., and Susana Campos, M.D., MPH. The live webchat was held on September 16, 2014.

The general webchat topics addressed by the Dana-Farber doctors are listed below. For your convenience, we also provided the approximate video start time associated with each discussion topic. The entire video runs 49 minutes and 20 seconds.

  • Various types/subtypes of ovarian cancer and treatment differences. [1:40 minutes]
  • CA-125 and other ovarian cancer biomarkers. [5:10 minutes]
  • Areas of ongoing ovarian cancer research. [9:28 minutes]
  • Ovarian cancer treatment alternatives to standard of care chemotherapy. [13:55 minutes]
  • PARP Inhibitors & Immunotherapy. [15:03 minutes]
  • Mechanisms to reverse platinum drug resistance. [17:15 minutes]
  • Correlation between ovarian cancer and HPV (Human papillomavirus). [19:30 minutes]
  • The use of clinical trials for the treatment of ovarian cancer. [19:43 minutes]
  • Stage 1 ovarian cancer prognosis. [21:47 minutes]
  • Gene mutations related to hereditary ovarian cancer risk. [22:55 minutes]
  • Treatment options for platinum drug refractory/resistant ovarian cancer. [25:27 minutes]
  • Treatment of BRCA gene-mutated ovarian cancer patients. [27:50 minutes]
  • Ovarian cancer prevention. [30:18 minutes]
  • Promising treatments for ovarian clear cell cancer. [31:43 minutes]
  • Proper nutrition during and after ovarian cancer treatment. [33:47 minutes]
  • Symptoms associated with an ovarian cancer recurrence. [35:06 minutes]
  • Ovarian neuroendocrine cancer. [36:16 minutes]
  • Small-cell ovarian cancer. [39:22 minutes]
  • Origin of ovarian cancer. [42:41 minutes]
  • Treatment options for isolated or limited recurrent ovarian cancer tumors/lesions. [45:26 minutes]
  • Closing: Most Exciting Ovarian Cancer Developments. [47:07 minutes]

 

U.S. President Barack Obama Proclaims September 2014 As National Ovarian Cancer Awareness Month — What Should You Know?

Today, U.S. President Barack Obama designated September 2014 as National Ovarian Cancer Awareness Month. “This month, our Nation stands with everyone who has been touched by this disease, and we recognize all those committed to advancing the fight against this cancer through research, advocacy, and quality care. Together, let us renew our commitment to reducing the impact of ovarian cancer and to a future free from cancer in all its forms.”

WhiteHouse-LogoToday, U.S. President Barack Obama designated September 2014 as National Ovarian Cancer Awareness Month. The Presidential Proclamation is reproduced in full below.

During National Ovarian Cancer Awareness Month, Libby’s H*O*P*E*™ will continue to honor the women who have lost their lives to the disease (including our own Elizabeth “Libby” Remick), support those who are currently battling the disease, and celebrate with those who have beaten the disease. This month, medical doctors, research scientists, and ovarian cancer advocates renew their commitment to develop a reliable early screening test, improve current treatments, discover new groundbreaking therapies, and ultimately, defeat the most lethal gynecologic cancer.

Let us begin this month with several important facts relating to ovarian cancer. Please take time to review these facts — they may save your life or that of a loved one.

didyouknow

Ovarian Cancer Facts

Lethality. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

Statistics. In 2014, the American Cancer Society (ACS) estimates that there will be approximately 21,980 new ovarian cancer cases diagnosed in the U.S. ACS estimates that 14,270 U.S. women will die from the disease, or about 39 women per day or 1-to-2 women every hour. This loss of life is equivalent to 28 Boeing 747 jumbo jet crashes with no survivors — each and every year.

Signs & Symptoms. Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that women with ovarian cancer are more like to experience four persistent, nonspecific symptoms as compared with women in the general population, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation. Note: Several other symptoms have been commonly reported by women with ovarian cancer. These symptoms include fatigue, indigestion, back pain, pain with intercourse, constipation and menstrual irregularities. However, these additional symptoms are not as useful in identifying ovarian cancer because they are also found in equal frequency in women within the general population who do not have the disease.

Age. Although the median age of a woman with ovarian cancer at initial diagnosis is 63, the disease cancer can afflict adolescent, young adult, and mature women. Ovarian cancer does not discriminate based upon age.

Prevention. Pregnancy, breastfeeding, long-term use of oral contraceptives, and tubal ligation reduce the risk of developing ovarian cancer.

Risk Factors.

  • BRCA Gene Mutations. Women who have had breast cancer, or who have a family history of breast cancer or ovarian cancer may have increased risk. Women who test positive for inherited mutations in the BRCA-1 or BRCA-2 gene have an increased lifetime risk of breast and ovarian cancer. A women can inherit a mutated BRCA gene from her mother or father. Women of Ashkenazi (Eastern European) Jewish ancestry are at higher risk (1 out of 40) for inherited BRCA gene mutations. Studies suggest that preventive surgery to remove the ovaries and fallopian tubes in women possessing BRCA gene mutations can decrease the risk of ovarian cancer.
  • Lynch Syndrome. An inherited genetic condition called “hereditary nonpolyposis colorectal cancer” (also called “Lynch syndrome“), which significantly increases the risk of colon/rectal cancer (and also increases the risk of other types of cancers such as endometrial (uterine), stomach, breast, small bowel (intestinal), pancreatic, urinary tract, liver, kidney, and bile duct cancers), also increases ovarian cancer risk.
  • Hormone Therapy. The use of estrogen alone menopausal hormone therapy may increase ovarian cancer risk. The longer estrogen alone replacement therapy is used, the greater the risk may be. The increased risk is less certain for women taking both estrogen and progesterone, although a large 2009 Danish study involving over 900,000 women suggests that combination hormone therapy may increase risk. Because some health benefits have been identified with hormone replacement therapy, a women should seek her doctor’s advice regarding risk verses benefit based on her specific factual case.
  • Smoking. Smoking has been linked to an increase in mucinous epithelial ovarian cancer.

Early Detection. There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear cannot detect ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA-125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed above. This early detection strategy has shown promise in a 2013 University of Texas M.D. Anderson Cancer Center early detection study involving over 4,000 women. Importantly, another large ovarian cancer screening trial that is using similar early detection methods is under way in the United Kingdom, with results expected in 2015. The U.K. study is called “UKCTOCS” (UK Collaborative Trial of Ovarian Cancer Screening) and involves over 200,000 women aged 50-74 years.

Treatment.

  • Treatment includes surgery and usually chemotherapy.
  • Surgery usually includes removal of one or both ovaries and fallopian tubes (salpingo-oophorectomy), the uterus (hysterectomy), and the omentum (fatty tissue attached to some of the organs in the belly), along with biopsies of the peritoneum (lining of the abdominal cavity) and peritoneal cavity fluid.
  • In younger women with very early stage tumors who wish to have children, removal of only the involved ovary and fallopian tube may be possible.
  • Among patients with early ovarian cancer, complete surgical staging has been associated with better outcomes.
  • For women with advanced disease, surgically removing all abdominal metastases larger than one centimeter (debulking) enhances the effect of chemotherapy and helps improve survival.
  • For women with stage III ovarian cancer that has been optimally debulked, studies have shown that chemotherapy administered both intravenously and directly into the abdomen (intraperitoneally) improves survival.
  • Patients can enter clinical trials at the start of, during the course of, and even after, their ovarian cancer treatment(s).
  • New types of treatment are being tested in ovarian and solid tumor clinical trials, including “biological therapy” and “targeted therapy.” For example, these types of treatment can exploit biological/molecular characteristics unique to an ovarian cancer patient’s specific tumor classification, or better “train” the patient’s own immune system to identify and attack her tumor cells, without harming normal cells.

Survival. 

  • If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 15% of all cases are detected at an early stage, usually fortuitously during another medical procedure. The majority of cases (61%) are diagnosed at a distant or later stage of the disease.
  • Overall, the 1-, 5-, and 10-year relative survival of ovarian cancer patients is 75%, 44%, and 34%, respectively.
  • The 10-year relative survival rate for all disease stages combined is only 38%.
  • Relative survival varies by age; women younger than 65 are twice as likely to survive 5 years (56%) following diagnosis as compared to women 65 and older (27%).

Help Spread the Word to “B-E-A-T” Ovarian Cancer

Please help us “B-E-A-T” ovarian cancer by spreading the word about the early warning signs & symptoms of the disease throughout the month of September.

beatlogo_308x196B = bloating that is persistent and does not come and go

E = eating less and feeling fuller

A =abdominal or pelvic pain

T = trouble with urination (urgency or frequency)

Women who have these symptoms almost daily for more than a few weeks should see their doctor. Prompt medical evaluation may lead to detection at the earliest possible stage of the disease. As noted above, early stage diagnosis is associated with an improved prognosis.

__________________________________________________________

The White House

Office of the Press Secretary

For Immediate Release August 29, 2014

BY THE PRESIDENT OF THE UNITED STATES OF AMERICA

A PROCLAMATION

obama_signing

Ovarian cancer is the most deadly of all female reproductive system cancers. This year nearly 22,000 Americans will be diagnosed with this cancer, and more than 14,000 will die from it. The lives of mothers and daughters will be taken too soon, and the pain of this disease will touch too many families. During National Ovarian Cancer Awareness Month, we honor the loved ones we have lost to this disease and all those who battle it today, and we continue our work to improve care and raise awareness about ovarian cancer.

When ovarian cancer is found in its early stages, treatment is most effective and the chances for recovery are greatest. But ovarian cancer is difficult to detect early — there is no simple and reliable way to screen for this disease, symptoms are often not clear until later stages, and most women are diagnosed without being at high risk. That is why it is important for all women to pay attention to their bodies and know what is normal for them. Women who experience unexplained changes — including abdominal pain, pressure, and swelling — should talk with their health care provider. To learn more about the risk factors and symptoms of ovarian cancer, Americans can visit www.Cancer.gov.

Regular health checkups increase the chance of early detection, and the Affordable Care Act expands this critical care to millions of women. Insurance companies are now required to cover well-woman visits, which provide women an opportunity to talk with their health care provider, and insurers are prohibited from charging a copayment for this service.

For the thousands of women affected by ovarian cancer, the Affordable Care Act also prohibits insurance companies from denying coverage due to a pre-existing condition, such as cancer or a family history of cancer; prevents insurers from denying participation in an approved clinical trial for any life-threatening disease; and eliminates annual and lifetime dollar limits on coverage. And as we work to ease the burden of ovarian cancer for today’s patients, my Administration continues to invest in the critical research that will lead to earlier detection, improved care, and the medical breakthroughs of tomorrow.

Ovarian cancer and the hardship it brings have affected too many lives. This month, our Nation stands with everyone who has been touched by this disease, and we recognize all those committed to advancing the fight against this cancer through research, advocacy, and quality care. Together, let us renew our commitment to reducing the impact of ovarian cancer and to a future free from cancer in all its forms.

NOW, THEREFORE, I, BARACK OBAMA, President of the United States of America, by virtue of the authority vested in me by the Constitution and the laws of the United States, do hereby proclaim September 2014 as National Ovarian Cancer Awareness Month. I call upon citizens, government agencies, organizations, health care providers, and research institutions to raise ovarian cancer awareness and continue helping Americans live longer, healthier lives. I also urge women across our country to talk to their health care providers and learn more about this disease.

IN WITNESS WHEREOF, I have hereunto set my hand this twenty-ninth day of August, in the year of our Lord two thousand fourteen, and of the Independence of the United States of America the two hundred and thirty-ninth.

BARACK OBAMA

__________________________________________________________

Sources:

  • Cancer Facts & Figures 2014. Atlanta: American Cancer Society; 2014 [PDF file].
  • Presidential Proclamation — National Ovarian Cancer Awareness Month, 2013, Office of the Press Secretary, The White House, August 29, 2014.

U.S. President Barack Obama Proclaims September 2013 As National Ovarian Cancer Awareness Month — What Should You Know?

Yesterday, U.S. President Barack Obama designated September 2013 as National Ovarian Cancer Awareness Month. “… During National Ovarian Cancer Awareness Month, we lend our support to everyone touched by this disease, we remember those we have lost, and we strengthen our resolve to better prevent, detect, treat, and ultimately defeat ovarian cancer…. This month, we extend a hand to all women battling ovarian cancer. We pledge our support to them, to their families, and to the goal of defeating this disease. …”

WhiteHouse-LogoYesterday, U.S. President Barack Obama designated September 2013 as National Ovarian Cancer Awareness Month. The Presidential Proclamation is reproduced in full below.

During National Ovarian Cancer Awareness Month, Libby’s H*O*P*E*™ will honor the women who have lost their lives to the disease, support those who are currently battling the disease, and celebrate with those who have beaten the disease. This month, medical doctors, research scientists, and ovarian cancer advocates renew their commitment to develop a reliable early screening test, improve current treatments, discover new groundbreaking therapies, and ultimately, defeat the most lethal gynecologic cancer.

Let us begin this month with several important facts relating to ovarian cancer. Please take time to review these facts — they may save your life or that of a loved one.

didyouknow

Ovarian Cancer Facts

Lethality. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.

Statistics. In 2013, the American Cancer Society (ACS) estimates that there will be approximately 22,240 new ovarian cancer cases diagnosed in the U.S. ACS estimates that 14,030 U.S. women will die from the disease, or about 38 women per day or 1-to-2 women every hour. This loss of life is equivalent to 28 Boeing 747 jumbo jet crashes with no survivors — every year.

Signs & Symptoms. Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that women with ovarian cancer are more like to experience four persistent, nonspecific symptoms as compared with women in the general population, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation. Note: Several other symptoms have been commonly reported by women with ovarian cancer. These symptoms include fatigue, indigestion, back pain, pain with intercourse, constipation and menstrual irregularities. However, these additional symptoms are not as useful in identifying ovarian cancer because they are also found in equal frequency in women within the general population who do not have the disease.

Age. Although the median age of a woman with ovarian cancer at initial diagnosis is 63, the disease cancer can afflict adolescent, young adult, and mature women. Ovarian cancer does not discriminate based upon age.

Prevention. Pregnancy, breastfeeding, long-term use of oral contraceptives, and tubal ligation reduce the risk of developing ovarian cancer.

Risk Factors.

  • BRCA Gene Mutations. Women who have had breast cancer, or who have a family history of breast cancer or ovarian cancer may have increased risk. Women who test positive for inherited mutations in the BRCA-1 or BRCA-2 gene have an increased lifetime risk of breast and ovarian cancer. A women can inherit a mutated BRCA gene from her mother or father. Women of Ashkenazi (Eastern European) Jewish ancestry are at higher risk (1 out of 40) for inherited BRCA gene mutations. Studies suggest that preventive surgery to remove the ovaries and fallopian tubes in women possessing BRCA gene mutations can decrease the risk of ovarian cancer.
  • Lynch Syndrome. An inherited genetic condition called “hereditary nonpolyposis colorectal cancer” (also called “Lynch syndrome“), which significantly increases the risk of colon/rectal cancer (and also increases the risk of other types of cancers such as endometrial (uterine), stomach, breast, small bowel (intestinal), pancreatic, urinary tract, liver, kidney, and bile duct cancers), also increases ovarian cancer risk.
  • Hormone Therapy. The use of estrogen alone menopausal hormone therapy may increase ovarian cancer risk. The longer estrogen alone replacement therapy is used, the greater the risk may be. The increased risk is less certain for women taking both estrogen and progesterone, although a large 2009 Danish study involving over 900,000 women suggests that combination hormone therapy may increase risk. Because some health benefits have been identified with hormone replacement therapy, a women should seek her doctor’s advice regarding risk verses benefit based on her specific factual case.
  • Smoking. Smoking has been linked to an increase in mucinous epithelial ovarian cancer.

Early Detection. There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear cannot detect ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA-125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed above. This early detection strategy has shown promise in a 2013 University of Texas M.D. Anderson Cancer Center early detection study involving over 4,000 women. Importantly, another large ovarian cancer screening trial that is using similar early detection methods is under way in the United Kingdom, with results expected in 2015. The U.K. study is called “UKCTOCS” (UK Collaborative Trial of Ovarian Cancer Screening) and involves over 200,000 women aged 50-74 years.

Treatment.

  • Treatment includes surgery and usually chemotherapy.
  • Surgery usually includes removal of one or both ovaries and fallopian tubes (salpingo-oophorectomy), the uterus (hysterectomy), and the omentum (fatty tissue attached to some of the organs in the belly), along with biopsies of the peritoneum (lining of the abdominal cavity) and peritoneal cavity fluid.
  • In younger women with very early stage tumors who wish to have children, removal of only the involved ovary and fallopian tube may be possible.
  • Among patients with early ovarian cancer, complete surgical staging has been associated with better outcomes.
  • For women with advanced disease, surgically removing all abdominal metastases larger than one centimeter (debulking) enhances the effect of chemotherapy and helps improve survival.
  • For women with stage III ovarian cancer that has been optimally debulked, studies have shown that chemotherapy administered both intravenously and directly into the abdomen (intraperitoneally) improves survival.
  • Patients can enter clinical trials at the start of, during the course of, and even after, their ovarian cancer treatment(s).
  • New types of treatment are being tested in ovarian and solid tumor clinical trials, including “biological therapy” and “targeted therapy.” For example, these types of treatment can exploit biological/molecular characteristics unique to an ovarian cancer patient’s specific tumor classification, or better “train” the patient’s own immune system to identify and attack her tumor cells, without harming normal cells.

Survival. 

  • If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 15% of all cases are detected at an early stage, usually fortuitously during another medical procedure. The majority of cases (61%) are diagnosed at a distant or later stage of the disease.
  • Overall, the 1-, 5-, and 10-year relative survival of ovarian cancer patients is 75%, 44%, and 34%, respectively.
  • The 10-year relative survival rate for all disease stages combined is only 38%.
  • Relative survival varies by age; women younger than 65 are twice as likely to survive 5 years (56%) following diagnosis as compared to women 65 and older (27%).

Help Spread the Word To “B-E-A-T” Ovarian Cancer

Please help us “B-E-A-T” ovarian cancer by spreading the word about the early warning signs & symptoms of the disease throughout the month of September.

beatlogo_308x196B = bloating that is persistent and does not come and go

E = eating less and feeling fuller

A =abdominal or pelvic pain

T = trouble with urination (urgency or frequency)

Women who have these symptoms almost daily for more than a few weeks should see their doctor. Prompt medical evaluation may lead to detection at the earliest possible stage of the disease. As noted above, early stage diagnosis is associated with an improved prognosis.

__________________________________________________________

The White House

Office of the Press Secretary

For Immediate Release August 30, 2013

BY THE PRESIDENT OF THE UNITED STATES OF AMERICA

A PROCLAMATION

obama_signingEach September, America calls attention to a deadly disease that affects thousands of women across our country. This year, over 22,000 women will develop ovarian cancer, and more than half that number of women will die of this disease. During National Ovarian Cancer Awareness Month, we lend our support to everyone touched by this disease, we remember those we have lost, and we strengthen our resolve to better prevent, detect, treat, and ultimately defeat ovarian cancer.

Because ovarian cancer often goes undetected until advanced stages, increasing awareness of risk factors is critical to fighting this disease. Chances of developing ovarian cancer are greater in women who are middle-aged or older, women with a family history of breast or ovarian cancer, and those who have had certain types of cancer in the past. I encourage all women, especially those at increased risk, to talk to their doctors. For more information, visit www.Cancer.gov.

My Administration is investing in research to improve our understanding of ovarian cancer and develop better methods for diagnosis and treatment. As we continue to implement the Affordable Care Act, women with ovarian cancer will receive increased access to health care options, protections, and benefits. Thanks to this law, insurance companies can no longer set lifetime dollar limits on coverage or cancel coverage because of errors on paperwork. By 2014, the health care law will ban insurers from setting restrictive annual caps on benefits and from charging women higher rates simply because of their gender. Additionally, insurance companies will be prohibited from denying coverage or charging higher premiums to patients with pre-existing conditions, including ovarian cancer.

This month, we extend a hand to all women battling ovarian cancer. We pledge our support to them, to their families, and to the goal of defeating this disease.

NOW, THEREFORE, I, BARACK OBAMA, President of the United States of America, by virtue of the authority vested in me by the Constitution and the laws of the United States, do hereby proclaim September 2013 as National Ovarian Cancer Awareness Month. I call upon citizens, government agencies, organizations, health care providers, and research institutions to raise ovarian cancer awareness and continue helping Americans live longer, healthier lives. I also urge women across our country to talk to their health care providers and learn more about this disease.

IN WITNESS WHEREOF, I have hereunto set my hand this thirtieth day of August, in the year of our Lord two thousand thirteen, and of the Independence of the United States of America the two hundred and thirty-eighth.

BARACK OBAMA

__________________________________________________________

Sources:

  • Cancer Facts & Figures 2013. Atlanta: American Cancer Society; 2013 [PDF file].
  • Presidential Proclamation — National Ovarian Cancer Awareness Month, 2013, Office of the Press Secretary, The White House, August 30, 2013.

PARP Inhibitor Olaparib Has Activity in High-Grade Serous Ovarian Cancer Without Inherited BRCA1 or BRCA2 Gene Mutations

Researchers affiliated with the British Columbia Cancer Agency reported Phase 2 clinical study results indicating that advanced ovarian cancer, with and without germline (inherited) BRCA 1 or BRCA 2 gene mutations, responded to treatment with the PARP inhibitor olaparib. The Phase 2 study results were published online in the August 21 edition of The Lancet Oncology.

Karen A. Gelmon, M.D., Lead Study Author, Medical Oncologist, and Head of the Investigational Drug Program, Experimental Therapeutics, Department of Medical Oncology, British Columbia Cancer Agency

Researchers affiliated with the British Columbia Cancer Agency reported results from a Phase 2 clinical study indicating that advanced ovarian cancer, with and without germline (inherited) BRCA 1 or BRCA 2 gene mutations, responded to treatment with the PARP (poly(ADP-ribose) polymerase ) inhibitor olaparib (a/k/a AZD2281).[1] The Phase 2 study results were published online in the August 21 edition of the Lancet Oncology.

Preliminary findings from this study were reported at the 2011 American Society of Clinical Oncology annual meeting, which was held in Chicago earlier this year. [2]

The Phase 2 study results indicate that approximately 41% of women with BRCA1 or BRCA 2-mutated ovarian cancer had objective responses to the targeted agent, along with 24% of patients with non-BRCA gene mutated ovarian cancer. The findings suggest that the PARP inhibitor olaparib might have broad applicability in ovarian cancer.

Unfortunately, the drug olaparib failed to produce any objective responses in patients with non-BRCA gene mutated, triple negative breast cancer. Triple negative breast cancer is a difficult to treat subtype of the disease that lacks three of the cellular “receptors” known to fuel most breast cancers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2).

Background

Olaparib is a small-molecule, potent oral PARP inhibitor. Olaparib targets PARP, an enzyme essential for repair of single-strand DNA breaks. Preclinical evidence showed that the drug olaparib had activity against tumors with homologous recombination (HR) DNA repair defects, such as those caused by BRCA 1 or BRCA 2 gene mutations.

Germline (inherited) BRCA 1 or BRCA 2 gene mutations confer a high risk of breast and ovarian cancers, and tumors arising from the mutations have aggressive tendencies, such as triple-negative breast cancer. PARP inhibition has already demonstrated activity in cancers with germline mutations. Accordingly, the goal of the Canadian researchers was to assess the safety and tolerability of this drug in patients with advanced triple-negative breast cancer or high-grade serous and/or undifferentiated ovarian cancer, which did not possess BRCA1 or BRCA2 mutations.

Past study reporting associated with olaparib over the past twelve months has been somewhat mixed. Data reported at the 2010 European Society of Medical Oncology annual congress showed no significant effect of olaparib on progression-free survival (PFS) in women with advanced BRCA gene-mutated ovarian cancer. [3] In contrast, data presented at the 2011 American Society of Clinical Oncology meeting showed almost a doubling of PFS with olaparib among women with relapsed, platinum-sensitive ovarian cancer. [4]

Olaparib Phase 2 Study Design

The olaparib Phase 2 study enrolled women into 4 cohorts or trial arms. The two stage trial design included:

  • BRCA 1 or BRCA 2 gene mutation negative (or unknown mutation status) patients with high-grade serous, undifferentiated, fallopian-tube, or primary peritoneal cancer (Arm A) or triple-negative breast cancer (Arm B); and
  • Two reference groups with recurrent ovarian cancer (Arm C) or breast cancer (Arm D) who possessed BRCA 1 or BRCA 2 gene mutations.

All patients had tumor biopsies taken prior to treatment, after 2 cycles of treatment, and at disease progression to assess PARP inhibitor activity, loss of heterozygosity, gene mutational changes, BRCA 1 or BRCA 2 gene expression, and other markers of response. Computed tomography (CT)/magnetic ressonance imaging (MRI) assessments were performed prior to treatment and at every 2 treatment cycles. The patients were treated with single agent olaparib (400 mg twice a day) on a continuous basis in 4 week cycles.

Researchers at six centers in Canada enrolled 91 patients in this Phase 2, open-label, nonrandomized trial (ClinicalTrials.gov ID: NCT00679783). [5] Eligible patients had advanced metastatic or recurrent breast cancer, or advanced ovarian cancer.

The study population consisted of 65 patients with ovarian cancer and 26 patients with breast cancer. All of the breast cancer patients and 64 ovarian cancer patients received at least one dose of olaparib (400 mg twice a day) and were included in the final study analysis.

The ovarian cancer cohort consisted of 17 patients with BRCA gene mutations and 47 patients without BRCA gene mutations. The breast cancer cohort consisted of 10 patients with BRCA gene mutations and 16 patients without BRCA gene mutations.

The researchers reported that 58 patients with ovarian cancer had the serous subtype (13 patients with BRCA gene mutations, 45 patients without BRCA gene mutations). In the breast cancer cohort, 21 patients had triple-negative disease, including five patients with BRCA gene mutations.

The primary endpoint of the Phase 2 study was objective response, as determined by RECIST (Response Evaluation Criteria In Solid Tumors) criteria.

Olaparib Phase 2 Study Results

None of the breast cancer patients had objective responses, and the disease control rate (proportion of patients with complete responsepartial response, or stable disease) at eight weeks was 38% (10 of 26 patients).

In the ovarian cancer cohort, seven of 17 (41%) patients with BRCA gene mutations, and 11 of 46 (24%) patients without BRCA gene mutations, experienced objective responses. The overall disease control rate was 66% (42 of 64), including benefit in 76% (11 of 17) of BRCA-negative patients and 62% (29 of 47) of the BRCA-positive subgroup.

The researchers reported: “Although responses were seen in both platinum-sensitive and platinum-resistant populations, our post hoc analysis reported activity mostly in patients with platinum-sensitive disease.” As a precaution, the researchers noted that their findings should be interpreted conservatively because of the small study sample size.

Among the ovarian cancer patients, there were thirteen premature discontinuations, without confirmed radiological disease progression. Six patients dropped out of the Phase 2 olaparib study. Of those patients, three women dropped out because of worsening disease, and three more women dropped out because of adverse events. One patient in the breast cancer group discontinued early because of an adverse event.

The most common adverse events in ovarian and breast cancer patients were fatigue (58 patients), nausea (58), vomiting (34), and decreased appetite (30).

“To our knowledge, this study is the first to show that olaparib monotherapy has activity in women with pretreated high-grade serous ovarian cancer without germline BRCA1 or BRCA2 mutations,” said Karen A. Gelmon, M.D., lead study author, medical oncologist, and head of the Investigational Drug Program, Experimental Therapeutics, within the department of medical oncology of the British Columbia Cancer Agency, along with her co-authors. Dr. Gelmon is also a professor of  medicine at the University of British Columbia.

“New treatments targeting DNA repair mechanisms seem to provide new hope for treatment of ovarian cancer,” the Canadian researchers added. “Subsequent reports of this study assessing tumor biopsies might identify which patients obtain most clinical benefit from olaparib.”

Expert Commentary

Melinda Telli, M.D., Assistant Professor, Stanford School of Medicine, Stanford University

The study findings by Gelmon et al. were accompanied by a commentary which was written by Melinda L. Telli, M.D., assistant professor, Stanford School of Medicine. [6] In that commentary, Dr. Telli states:

… Their [Gelson et al.] study is noteworthy in that it shows, for the first time, activity of a PARP inhibitor as monotherapy in women with advanced high-grade serous ovarian cancer who do not have a germline BRCA1 or BRCA2 mutation. This finding not only suggests new therapeutic possibilities for women with this aggressive type of ovarian cancer, but also importantly confirms the hypothesis that subpopulations of patients with common sporadic tumors can be targeted effectively with PARP inhibitor therapy. An additional important negative finding of this study was the absence of objective responses to single-agent olaparib in women with sporadic triple-negative breast cancer, although the numbers were small and patients heavily pretreated. With new therapies come new challenges, and the clinical development of PARP inhibitors has certainly encountered many obstacles. Thus, to see the potential of these drugs realized is particularly satisfying. This important finding of activity in high-grade serous ovarian cancer marks a new beginning to what will hopefully be a long and fruitful future for PARP inhibitors as they make their move beyond BRCA.

Another expert expressed excitement about the future potential of olaparib. Stephanie V. Blank, M.D., an assistant professor in clinical gynecologic oncology at NYU School of Medicine, said:

It is extremely exciting that an agent as promising as olaparib can be effective in a broader group of women than had been expected. The next challenge will lie in getting our hands on the drug, which at present is only available for patients on clinical trials.

Study Relationship Disclosures

The study was supported by AstraZeneca. Gelmon and several co-authors disclosed relationships with AstraZeneca. The co-authors included AstraZeneca employees. Dr. Telli reported no relevant disclosures.

Libby’s H*O*P*E* Commentary

We would like to extend our congratulations to Dr. Gelmon, as well as her co-investigators, many of whom are critical team members of  the Ovarian Cancer Research Program of British Columbia (OvCaRe). On September 8, 2010, we reported on the OvCaRe team finding of prevalent ARID1A gene mutations in endometriosis-associated, epithelial ovarian cancers (i.e., clear cell and endometrioid). [7]

The findings reported by Gelmon et al. will take on critical importance if it is eventually proven that PARP inhibitors could benefit up to 50% of high-grade serous ovarian cancer patients who possess germline (inherited) or somatic (lifetime acquired) mutations in the BRCA 1 or BRCA 2 gene, or other alternations in the HR DNA repair pathway, as suggested by past preclinical study findings, [8] including those recently reported by The Cancer Genome Atlas. [9]

References

1/ Gelmon KA, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase II, multicenter, open-label, nonrandomized study. Lancet Oncol 2011; 12: 852-861. [Abstract]

2/Gelmon KA, et al. Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J Clin Oncol 28:15s, 2010 (suppl; abstr 3002) [2011 American Society of Clinical Oncology Annual Meeting, Abstract 3002]

3/Kaye S, et al Phase II study of the oral PARP inhibitor olaparib (AZD2281) versus liposomal doxorubicin in ovarian cancer patients with BRCA1 and/or BRCA2 mutations. Annals of Oncology 2010 21(8)8): viii304–viii313, 2010 doi:10.1093/annonc/mdq526 [2010 European Society of Medical Oncology Annual Meeting, Abstract 9710, Adobe Reader PDF Document].

4/Ledermann JA, et al. Phase II randomized placebo-controlled study of olaparib (AZD2281) in patients with platinum-sensitive relapsed serous ovarian cancer (PSR SOC). J Clin Oncol 29: 2011 (suppl; abstr 5003) [2011 American Society of Clinical Oncology Annual Meeting, Abstract 5003]

5/Phase II, Open Label, Non-Randomized Study of AZD2281 in the Treatment of Patients With Known BRCA or Recurrent High Grade Serous/ Undifferentiated Tubo-Ovarian Carcinoma and in Known BRCA or Triple Negative Breast Cancer to Determine Response Rate and Correlative Markers of Response, ClinicalTrials.gov ID: NCT00679783.

6/Telli ML. PARP inhibitors in cancer: Moving beyond BRCA. Lancet Oncol 2011; 12: 827-828. [Full Text]

7/British Columbian Researchers Make Groundbreaking Genetic Discovery In Endometriosis-Associated Ovarian Cancers, by Paul Cacciatore, Libby’s H*O*P*E*™, September 8, 2010.

8/New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition, by Paul Cacciatore, Libby’s H*O*P*E*™, November 11, 2010.

9/In-Depth Review: The Cancer Genome Atlas Reports On Landmark Analysis of High-Grade Serous Ovarian Cancer, by Paul Cacciatore, Libby’s H*O*P*E*™, August 5, 2011.

Additional Sources:

PARP Inhibitor Clinical Trial Information

Related Libby’s H*O*P*E* Posts

  • Inherited Mutations in RAD51D Gene Confer Susceptibility to Ovarian Cancer, August 7, 2011.
  • In-Depth Review: The Cancer Genome Atlas Reports On Landmark Analysis of High-Grade Serous Ovarian Cancer, August 5, 2011.
  • ASCO 2011: Maintenance Therapy With PARP Inhibitors Could Play Important Role in Treatment of Recurrent Ovarian Cancer, May 19, 2011.
  • PARP Inhibitor MK-4827 Shows Anti-Tumor Activity in First Human Clinical Study, November 17, 2010.
  • New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition, November 11, 2010.
  • PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, April 23, 2010.

Related WORD of HOPE Ovarian Cancer Podcast

  • 10 Exciting Ovarian Cancer Research Topics from 2010 — PARP Inhibitors & BRCA Gene-Mutated Ovarian Cancer (Topic #2 of 10), Episode #2, WORD of HOPE Ovarian Cancer Podcast, April 11, 2011.

U.K. Researchers Launch Clinical Trial of Mercaptopurine (6-MP) In Women with Hereditary Breast and Ovarian Cancer

A Cancer Research UK-funded clinical trial of a new drug for patients with advanced breast or ovarian cancer due to inherited BRCA gene mutations has been launched at the Experimental Cancer Medicine Centre at the University of Oxford.

A Cancer Research UK-funded trial of a new drug for patients with advanced breast or ovarian cancer due to inherited BRCA gene faults has been launched at the Experimental Cancer Medicine Centre at the University of Oxford (OxFord ECMC).

Mutations in the BRCA 1 (BReast CAncer-1) and BRCA 2 genes are thought to account for around 2-5 percent of all breast cancer cases. Women carrying the BRCA1 and BRCA2 mutation have a 45-65 percent chance of developing breast cancer, and a 20-45 percent chance of developing ovarian cancer, by the age of 70. Genetic testing for faulty BRCA genes is available for women with a very strong family history.

DNA damage, due to environmental factors and normal metabolic processes inside the cell, occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day. A special enzyme (shown above in color), encircles the double helix to repair a broken strand of DNA. Without molecules that can mend DNA single strand and double strand breaks, cells can malfunction, die, or become cancerous. (Photo: Courtesy of Tom Ellenberger, Washington University School of Medicine in St. Louis)

Cells lacking a properly functioning BRCA1 or BRCA2 gene  are less able to repair DNA damage. These defective cells are more sensitive to (i) platinum-based chemotherapy drugs such as cisplatin – which work by causing double-stranded DNA breaks, and (ii) PARP inhibitors, a newer class of drugs which prevent cells lacking a properly functioning BRCA gene from being able to repair damaged DNA. PARP inhibitors have shown promise in clinical trials but, as with most drugs, resistance can develop meaning some women can stop responding.

This trial, led by a team based at the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, is looking at a drug called “6MP” (a/k/a mercaptopurine; brand name: Purinethol), which is already used to treat leukemia and is often given in combination with another chemotherapy drug called “methotrexate.”

Earlier studies involving cells grown in the laboratory suggest that a class of drugs called “thiopurines,” which includes 6MP, are effective at killing cancer cells lacking BRCA – a gene which significantly increases the risk of breast and ovarian cancer – even after they have developed resistance to treatments like PARP inhibitors and cisplatin.

This trial is one of a growing number looking at matching patients to the most appropriate treatment based on their genetic makeup and that of their cancer – an approach known as “personalized medicine.”

If successful, the results will pave the way for a larger Phase 3 clinical trial, which could lead to an additional treatment option for the 15 out of every 100 women with breast and ovarian cancers, which are caused by faults in the BRCA1 or BRCA2 gene.

Trial leader Dr. Shibani Nicum, a gynecology specialist based at the Oxford ECMC, and a researcher in Oxford University’s Department of Oncology, said: “PARP inhibitors are a powerful new class of drugs developed specifically to target tumors caused by BRCA 1 and BRCA2 faults, but drug resistance remains a problem. We hope that the very encouraging results we have seen in early laboratory studies involving 6MP will lead to increased treatment options for these patients in the future.”

U.K. trial participant Suzanne Cole, 54, from Newbury, has a strong history of ovarian cancer in her family, with her sister, mother and grandmother all having been diagnosed with suspected cases of the disease at a relatively young age. But, it was not until many years later, after she herself was diagnosed with cancer, that doctors were able to trace the cause of this back to a BRCA1 mutation in her family.

Suzanne Cole said: “I was diagnosed in 2009 and initially had surgery then chemotherapy. I was then told about the trial and I went away and studied the information. The doctors were able to answer all my questions and then I agreed to sign up. I’m happy to be a part of this work as it could help others by moving treatments forward.”

Professor Mark Middleton, director of the Oxford ECMC, said: “It’s exciting to see drugs being developed for specific groups of patients who share the same underlying genetic faults in their cancer. Targeted treatments are at the cutting edge of cancer care and we’re proud to be involved in bringing such drugs a step closer to the clinic.”

Dr. Sally Burtles, Cancer Research UK’s director of the ECMC Network, said: “This study helps demonstrate the value of being able to pool subsets of patients who share specific rare faults in their tumor from a UK-wide network of Experimental Cancer Medicine Centres. This will be crucial as we move towards a new era of personalized medicine with treatments targeted according to the individual biological profile of a patient’s cancer.”

For more information on the trial, please visit www.cancerhelp.org.uk, or call the Cancer Research UK cancer information nurses on 0808-800-4040.

Sources:

  • Researchers trial new drug for women with hereditary breast and ovarian cancer, Press Release, Cancer Research UK, August 17, 2011.
  • Issaeva N, et al. 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 2010 Aug 1;70(15):6268-76. Epub 2010 Jul 14. PubMed PMID: 20631063; PubMed PMCID: PMC2913123.

2011 ASCO: Women with BRCA Gene Mutations Can Take Hormone-Replacement Therapy Safely After Ovary Removal

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania

Women with the BRCA1 or BRCA2 gene mutations, which are linked to a very high risk of breast and ovarian cancer, can safely take hormone-replacement therapy (HRT) to mitigate menopausal symptoms after surgical removal of their ovaries, according to new research from the Perelman School of Medicine at the University of Pennsylvania which will be presented on Monday, June 6 during the American Society for Clinical Oncology’s annual meeting. Results of the prospective study indicated that women with BRCA mutations who had their ovaries removed and took short-term HRT had a decrease in the risk of developing breast cancer.

Research has shown that in women who carry the BRCA gene mutations, the single most powerful risk-reduction strategy is to have their ovaries surgically removed by their mid-30s or early 40s. The decrease in cancer risk from ovary removal comes at the cost of early menopause and menopausal symptoms including hot flashes, mood swings, sleep disturbances and vaginal dryness — quality-of-life issues that may cause some women to delay or avoid the procedure.

Lead study author Susan M. Domchek, M.D., Associate Professor, Divison of Hematology-Oncology & Director, Cancer Risk Evaluation Program, Abramson Cancer Center, University of Pennsylvania

“Women with BRCA1/2 mutations should have their ovaries removed following child-bearing because this is the single best intervention to improve survival,” says lead author Susan M. Domchek, M.D., an associate professor in the division of Hematology-Oncology and director of the Cancer Risk Evaluation Program at Penn’s Abramson Cancer Center. “It is unfortunate to have women choose not to have this surgery because they are worried about menopausal symptoms and are told they can’t take HRT. Our data say that is not the case — these drugs do not increase their risk of breast cancer.”

Senior author Timothy R. Rebbeck, Ph.D., associate director of population science at the Abramson Cancer Center, notes that BRCA carriers may worry — based on other studies conducted in the general population showing a link between HRT and elevated cancer risk — that taking HRT may negate the effects of the surgery on their breast cancer risk. The message he hopes doctors will now give to women is clear: “If you need it, you can take short-term HRT. It doesn’t erase the effects of the oophorectomy.”

In the current study, Domchek, Rebbeck, and colleagues followed 795 women with BRCA1 mutations and 504 women with BRCA2 mutations who have not had cancer enrolled in the PROSE consortium database who underwent prophylactic oophorectomy, divided into groups of those who took HRT and those who did not. Women who underwent prophylactic oophorectomy had a lower risk of breast cancer than those who did not, with 14 percent of the women who took HRT after surgery developing breast cancer compared to 12 percent of the women who did not take HRT after surgery. The difference was not statistically significant.

Domchek says some of the confusion about the role of HRT in cancer risk elevation comes from the fact that the risks and benefits associated with HRT depend on the population of women studied. In this group of women — who have BRCA1/2 mutations and who have had their ovaries removed while they are quite young — HRT should be discussed and considered an option for treating menopausal symptoms. “People want to make hormone replacement therapy evil, so they can say ‘Don’t do it,'” she says. “But there isn’t one simple answer. The devil is in the details of the studies.”

By contrast, Penn researchers and their collaborators in the PROSE consortium have shown definitively that oophorectomy reduces ovarian and breast cancer incidence in these women, and reduces their mortality due to those cancers. But paying attention to the role that hormone depletion following preventive oophorectomy plays in women’s future health is also important.

“We know for sure that using HRT will mitigate menopausal symptoms, and we have pretty good evidence that it will help bone health,” she says. “Women need to be aware that going into very early menopause does increase their risk of bone problems and cardiovascular problems. And even if they aren’t going to take HRT, they need to be very attentive to monitoring for those issues. But they also need to know that HRT is an option for them and to discuss it with their doctors and other caregivers.”

About Penn Medicine

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise. Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

About the University of Pennsylvania Perelman School of Medicine

Penn’s Perelman School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

About the University of Pennsylvania Health System

The University of Pennsylvania Health System’s patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation’s top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation’s first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Sources:

ASCO 2011: Maintenance Therapy With PARP Inhibitors Could Play Important Role in Treatment of Recurrent Ovarian Cancer

A randomized phase II clinical trial showed that the oral PARP inhibitor drug olaparib (AZD2281), given after chemotherapy, improved progression-free survival in women with the most common type of recurrent ovarian cancer.

ASCO Releases Studies From Upcoming Annual Meeting – Important Advances in Targeted Therapies, Screening, and Personalized Medicine

The American Society of Clinical Oncology (ASCO) today highlighted several studies in a press briefing from among more than 4,000 abstracts publicly posted online at http://www.asco.org in advance of ASCO’s 47th Annual Meeting. An additional 17 plenary, late-breaking and other major studies will be released in on-site press conferences at the Annual Meeting.

The meeting, which is expected to draw approximately 30,000 cancer specialists, will be held June 3-7, 2011, at McCormick Place in Chicago, Illinois. The theme of this year’s meeting is “Patients. Pathways. Progress.”

“This year marks the 40th anniversary of the signing of the National Cancer Act, a law that led to major new investments in cancer research. Every day in our offices, and every year at the ASCO meeting, we see the results of those investments. People with cancer are living longer, with a better quality of life, than ever before,” said George W. Sledge Jr., M.D., President of ASCO, Ballve-Lantero Professor of Oncology and professor of pathology and laboratory medicine at the Indiana University School of Medicine.

“With our growing understanding of the nature of cancer development and behavior, cancer is becoming a chronic disease that a growing number of patients can live with for many years,” said Dr. Sledge. “The studies released today are the latest examples of progress against the disease, from new personalized treatments, to new approaches to screening and prevention.”

The study results from a phase II clinical trial involving maintenance therapy with the PARP (poly (ADP-ribose) polymerase) inhibitor olaparib were highlighted today in the ASCO press briefing, as summarized below.

Randomized Study Shows that Maintenance Therapy With PARP Inhibitors Could Play Important Role in Treatment of Recurrent Ovarian Cancer

A phase II randomized trial showed that maintenance treatment with the oral PARP inhibitor drug olaparib (AZD2281) improved progression-free survival by about four months in women with the most common type of relapsed ovarian cancer. This is the first randomized trial to demonstrate a benefit for maintenance therapy for recurrent ovarian cancer, and the first randomized trial in ovarian cancer of a PARP inhibitor– a novel class of molecularly targeted drugs.

The results of this study, if confirmed in larger trials, could lead to a new treatment approach for recurrent ovarian cancer in which drugs like olaparib are given over a long period of time to prevent recurrences or prolong remissions. This somewhat novel approach, called maintenance therapy, has already proven useful in lung cancer. Standard treatment for ovarian cancer includes platinum-based chemotherapy. After this regimen, patients are observed until recurrence, and then treated with another course of chemotherapy. While some tumors respond well to chemotherapy, the regimens are too toxic for patients to take continuously, and clinical trials have not shown any benefit for extended courses of chemotherapy.

Jonathan A. Ledermann, M.D., Lead Author & Principal Investigator of PARP Maintenance Study; Professor, Medical Oncology, UCL Cancer Institute, University College London

“A well-tolerated antitumor agent that could be used for months or perhaps years as maintenance therapy after standard chemotherapy could be a big step forward and ultimately extend survival,” said lead author Jonathan A. Ledermann, M.D., principal investigator of the study and Professor of Medical Oncology at UCL Cancer Institute, University College London. “This study demonstrates proof of principle for the concept of maintenance therapy in ovarian cancer using a PARP inhibitor. Our progression-free survival difference was very impressive and better than we anticipated.”

The multicenter, international study randomized 265 women with high-grade serous ovarian cancer to either olaparib or placebo. Patients were enrolled in the trial within 8 weeks of having achieved either a complete or partial response to platinum-based treatment. PARP inhibitors have been shown to work better in patients whose tumors have responded to platinum.

In the study, the progression-free survival (PFS) – the amount of time during and after treatment in which the cancer does not return – was significantly longer in the group receiving olaparib than the placebo group, with a median of 8.4 months versus 4.8 months. At the time of data analysis, half the patients randomized to olaparib (68 patients) had not relapsed and were still receiving the drug, while only 16 percent (21 patients) remained on placebo – so overall survival data were not yet available for analysis.

Adverse events were more commonly reported in the group receiving olaparib than placebo, including nausea, fatigue, vomiting, and anemia, but the majority of these were not severe. Dose reductions to manage side effects were allowed in the study and were more prevalent in the olaparib group (23 percent) compared to the placebo group (7 percent).

Olaparib inhibits the enzyme poly (ADP-ribose) polymerase — abbreviated “PARP” — which is involved in DNA (deoxyribonucleic acid) repair. Up to half of women with high-grade serous ovarian cancer – the most common type of ovarian cancer – may have a DNA repair deficiency that makes them more susceptible to treatment with PARP inhibitors.

A number of PARP inhibitors are being studied in phase II and phase III clinical trials, as single agents and in combination with standard chemotherapies and radiation, in some types of breast and ovarian cancers believed to have DNA repair defects.

Sources:

PARP Clinical Trials:
Resources:
Related WORD of HOPE™ Ovarian Cancer Podcasts:
Related Libby’s H*O*P*E*™ Postings:
Related Libby’s H*O*P*E*™ Videos Re PARP Inhibitors


Caris Life Sciences Launches Molecular Profiling Service For Ovarian Cancer Patients

Caris Life Sciences announces the launch of a new molecular profiling service for ovarian cancer patients

Caris Life Sciences, Inc. (Caris), a leading biosciences company focused on enabling precise and personalized healthcare through the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic services, announced the launch of a new, Caris Target Now™ molecular profile for ovarian cancer patients. This expansion of the Caris Target Now™ offering provides individualized molecular information to treating physicians, relevant to the selection of therapies to treat this highly-lethal cancer. Ovarian cancer affects more than 20,000 women annually and produces some of the highest five-year mortality rates found among the 200+ types of cancer.

Caris Target Now™ molecular profiling examines the unique genetic and molecular make-up of each patient’s tumor so that treatment options may be matched to each patient individually.  Caris Target Now™ helps patients and their treating physicians create a cancer treatment plan based on the tumor tested. By comparing the tumor’s information with data from published clinical studies by thousands of the world’s leading cancer researchers, Caris can help determine which treatments are likely to be most effective and, just as important, which treatments are likely to be ineffective.

The Caris Target Now™ test is performed after a cancer diagnosis has been established and the patient has exhausted standard of care therapies or if questions in therapeutic management exist. Using tumor samples obtained from a biopsy, the tumor is examined to identify biomarkers that may have an influence on therapy. Using this information, Caris Target Now™ provides valuable information on the drugs that will be more likely to produce a positive response. Caris Target Now™ can be used with any solid cancer such as lung cancer, breast cancer, prostate cancer, and now, ovarian cancer.

Evidence Behind Caris Target Now™

Daniel D. Von Hoff, M.D., F.A.C.P., is the Executive Director of Caris Life Sciences' Clinical Research

A multi-center, prospective, pilot study first published in The Journal of Clinical Oncology (JCO) in October 2010 [1] — along with an accompanying editorial [2] —  determined that personalized cancer treatment tailored to a tumor’s unique genetic make-up identified therapies that increased progression free survival (PFS) over previous therapies in 27% of patients with advanced disease.

The purpose of the study was to compare PFS using a treatment regimen based on the molecular profiling (MP) of a patient’s tumor with the PFS determined for the most recent regimen on which the patient had experienced progression after taking that regimen for 6 weeks.  Unlike a typical control study, each patient was his or her own study control.  Tissue samples from patients with refractory metastatic cancer were submitted for MP in two formats including:

In many of these refractory tumors, targets for conventional therapies were identified, which was “a surprise finding,” according to Dr. Daniel Von Hoff, the Executive Director of Caris’ Clinical Research.  But the profiling also suggested therapies in cases where the treating physician was unsure regarding the next line of treatment. The MP approach was found to have clinical benefit for the individual patient who had a PFS ratio (PFS on MP selected therapy/PFS on prior therapy) of ≥ 1.3.  Among the 86 patient tumors that were profiled with Caris Target Now™:

  • 84 (98%) had a detected molecular target;
  • 66 of the 84 patients were treated with therapies that were linked to their MP results; and
  • 18 (27%) of 66 patients had a PFS ratio of ≥ 1.3 (95% CI, 17% to 38% range; one-sided, one-sample P = .007).

The study investigators concluded that it is possible to identify molecular targets in patients’ tumors. In 27% of the patients, the MP approach resulted in a longer PFS on a MP-based regimen than on the regimen that was based on physician’s choice.  “It was also encouraging to see that the overall survival in these 18 patients was better than that for the whole group of 66 patients (9.7 vs. 5 months),” said Von Hoff.

Of the 66 participants, 27% had breast cancer, 17% had colorectal cancer, and 8% had ovarian cancer; the remainder were classified as miscellaneous.  The improvement in PFS among the various types of cancer patients was as follows: 44% in patients with breast cancer, 36% in those with colorectal cancer, 20% in those with ovarian cancer, and 16% in the miscellaneous group.

The investigators in the study utilized Caris Target Now™ molecular profiling, which is currently available to oncologists and their patients.

“Oncologists commonly expect a 1-in-20 chance of patient response in 3rd- and 4th-line therapies.  This recent study suggests those odds can be improved to 1-in-4 when using therapeutic guidance provided by Caris Target Now™.”

Dr. Jeff Edenfield, a practicing oncologist with US Oncology, and routine user of Caris Target Now™

Since 2008, more than 15,000 cancer patients have received a Caris Target Now™ molecular profile. Caris Target Now™ has been designed to provide treating physicians with therapeutic options, often identifying anti-tumor agents that may not have been considered before. The Caris Target Now™ report is based on the genetic make-up of an individual patient’s tumor cross-referenced with a vast and growing proprietary database of clinical literature, correlating genetic tumor information to therapeutic response. Using biomarker-based therapies has been linked to the likelihood of a positive patient response.

James H. Doroshow, M.D., Director, Division of Cancer Treatment & Diagnosis, National Cancer Institute

In the accompanying JCO editorial, James H. Doroshow, M.D., the Director of the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis, commented that the study by Von Hoff et. al. possessed several limitations. [2] The stated limitations of the study include (i) uncertainty surrounding the achievement of the study’s primary end point based upon use of the time-to-disease progression (TTP) index; (ii) limited prior experience with patients as their own controls, and (iii) lack of study randomization.  Despite these limitations, Dr. Doroshow noted that important lessons can be learned from the study conducted by Von Hoff et. al.

“First and foremost, this study vividly reminds us that the need for therapeutic intervention arises one patient at a time. When we sit with an individual who is trying to live with an advanced solid tumor after having already received several different chemotherapy regimens, it is unlikely that any published prognostic index or gene signature, as currently implemented, will be of much help in decision making—for physicians or for patients. [citation omitted]. Thus, a truly urgent need exists to move past the empiric therapeutic paradigm that launched the first half century of systemic oncologic treatment. [citation omitted]. Von Hoff et al have taken a noteworthy, albeit somewhat flawed, first step in this direction in their attempt to imagine a novel paradigm for cancer therapy, using the techniques of molecular tumor characterization on an individual patient basis. Future investigators of new cancer therapies should learn from this initial effort and focus on how these rapidly evolving molecular tools can be used in the development of an entirely new investigative model for the systemic treatment of cancer.”

Caris is currently conducting and initiating additional studies of Caris Target Now™ molecular tumor profiling through collaboration with leading institutions and cancer centers. 

With 300% growth in utilization in 2010, medical oncologists are recognizing the utility and value of this novel approach in providing improved care to patients. Physician adoption is rapidly accelerating, as Caris recently reached the threshold of providing Caris Target Now™ services to more than 1,000 patients per month. This new introduction for ovarian cancer is most relevant for physicians treating women who have progressed on platinum-based therapy and/or who need guidance for third-line treatment options. Caris Target Now™ for ovarian cancer offers the opportunity for these women to benefit from personalized and targeted therapy guidance based upon molecular profiling.

“Ovarian cancer is a highly-lethal cancer that presents distinct diagnostic and therapeutic challenges, often presenting no major symptoms until the cancer has metastasized,” said Dr. Les Paul, Caris’ Senior Vice President for Medical Affairs. “Choosing the optimal therapeutic intervention at the earliest possible stage is critical to extending progression free survival in ovarian cancer patients. With the introduction of the Caris Target Now™ ovarian profile, we are able to support physicians with as much information as possible, including the latest relevant clinical literature citations to aid them in making the best therapeutic decision possible for each patient.”

Examples of the potential use of an existing clinical trial drug to target a specific molecular characteristic possessed by an ovarian cancer include:

Use of Molecular Profiling By Leading Medical Institutions; Sponsorship By A Charitable Foundation

It should be noted that molecular profiling is already being used in clinical practice at several leading cancer institutions.  At Massachusetts General Hospital, (MGH), The MGH Cancer Centre uses a PCR-based mutation-detection assay and state-of-the-art robotic technology, called “SNaPshot,” to look for 130 known gene mutations in tumor tissue. “We are already using molecular profiling for all our lung cancer patients,” said Jeffrey Settleman, Ph.D., scientific director at the MGH Cancer Center, to Medscape Oncology in 2009. [12] “This has already had an impact on treatment decisions, and it appears to be improving treatment. We have seen better response rates and we hope that this will translate into better survival.”  In fact, MGH is engaged currently in the largest study aimed at matching tumor genomes to potential anticancer treatments. [13] It is our understanding that MGH performs molecular profiling currently on melanoma, leukemia, brain and metastatic breast cancer, and metastatic adenocarcinoma that start in the lung, colon or rectum.

Several other institutions are in the process of developing or have developed their own systems, including the University of Texas M.D. Anderson Cancer Center [14], and the Dana-Farber Cancer Institute [15].  All are striving to profile individual tumors so that therapy can be personalized, which means that it has a better chance of working because it targets specific mutations found in a patient’s tumor. The MP approach also prevents patients from being exposed to drugs that have a limited chance of success, eliminating toxicity and improving quality of life.

We should also note the Clearity Foundation sponsors molecular profiling services on behalf of ovarian cancer patients at no cost. The Clearity Foundation is a 501(c)(3) not-for-profit, founded by Laura Shawver, Ph.D., who is an ovarian cancer survivor and research scientist.  The Clearity Foundation seeks to improve treatment outcomes in recurrent and progressive ovarian cancer patients by providing diagnostic services that determine the molecular profile of the individual patient with the belief that a molecular “blueprint” is crucial to finding appropriate treatments.

About Caris Target Now™

Caris Target Now™ is a comprehensive tumor analysis coupled with an exhaustive clinical literature search, which matches appropriate therapies to patient-specific biomarker information to generate an evidence-based treatment approach. Caris Target Now™ testing provides information that may help when considering potential treatment options.

Caris Target Now™ begins with an immunohistochemistry (IHC) analysis. An IHC test measures the level of important proteins in cancer cells providing clues about which therapies are likely to have clinical benefit and then what additional tests should be run.

If there is access to a frozen sample of patient tissue available, Caris may also run a gene expression analysis by microarray. The microarray test looks for genes in the tumor that are associated with specific treatment options.

As deemed appropriate based on each patient, Caris will run additional tests. Fluorescent In-Situ Hybridization (FISH) is used to examine gene copy number variation (i.e., gene amplification) in the tumor. Polymerase Chain Reaction (PCR) or DNA sequencing is used to determine gene mutations in the tumor DNA.

Caris takes the results from each test and applies the published findings from thousands of the world’s leading cancer researchers. Based on this analysis, Caris Target Now™ identifies potential therapies for patients and their treating physicians to discuss.

Caris Target Now™ was developed and its performance characteristics were determined by Caris, a CLIA-certified medical laboratory in compliance with the U.S. Clinical Laboratory Amendment Act of 1988 and all relevant U.S. state regulations. It has not been approved by the United States Food and Drug Administration.

About Caris Life Sciences

Caris Life Sciences, a leading biosciences company, specializes in the development and commercialization of the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic technologies, in the fields of oncology, dermatopathology, hematopathology, gastrointestinal pathology and urologic pathology. The company provides academic-caliber consultations for patients every day, through its industry-leading team of expert, subspecialty pathologists. Caris also offers advanced molecular analyses of patient samples through prognostic testing services and genomic, transcriptomic, and proteomic profiling to assist physicians in their treatment of cancer. Currently, Caris is developing the Carisome™ platform, a proprietary, blood-based technology for diagnosis, prognosis, and theranosis of cancer and other complex diseases. The company is headquartered in the Dallas metroplex, and operates laboratories at the headquarters, as well as in the Phoenix and Boston metro areas.

About Daniel Von Hoff, M.D., FACP, Executive Director, Caris Life Sciences Clinical Research

Daniel D. Von Hoff, M.D., is currently physician-in-chief and director of translational research at Translational Genomics Research Institute (TGen) in Phoenix, Arizona. He is also chief scientific officer for US Oncology and the Scottsdale Healthcare’s Clinical Research Institute.  He holds an appointment as clinical professor of medicine at the University of Arizona College of Medicine.

Dr. Von Hoff’s major interest is in the development of new anticancer agents, both in the clinic and in the laboratory. He and his colleagues were involved in the beginning of the development of many of the agents now in routine use, including: mitoxantrone, fludarabine, paclitaxel, docetaxel, gemcitabine, irinotecan, nelarabine, capecitabine, lapatinib and others.

At present, Von Hoff and his colleagues are concentrating on the development of molecularly targeted therapies particularly for patients with advanced pancreatic cancer. Dr. Von Hoff’s laboratory interests and contributions have been in the area of in vitro drug sensitivity testing to individualize treatment for the patient, mechanisms of gene amplification, particularly of extrachromosomal DNA, and understanding of and targeting telomere maintenance mechanisms. His laboratory work now concentrates on the discovery of new targets in pancreatic cancer.

Dr. Von Hoff has published more than 543 papers, 133 book chapters, and more than 956 abstracts. Dr. Von Hoff  also served on President Bush’s National Cancer Advisory Board from June 2004 through March 2010.

Dr. Von Hoff is the past president of the American Association for Cancer Research(AACR) (the world’s largest cancer research organization), a fellow of the American College of Physicians, and a member and past board member of the American Society of Clinical Oncology (ASCO). He is a founder of ILEX™ Oncology, Inc. (acquired by Genzyme after Ilex had 2 agents, alemtuzumab and clofarabine approved for patients with leukemia). He is founder and the editor emeritus of Investigational New Drugs – The Journal of New Anticancer Agents; and, editor-in-chief of Molecular Cancer Therapeutics. He is also proud to have been a mentor and teacher for multiple medical students, medical oncology fellows, graduate students, and post-doctoral fellows. He is a co-founder of the AACR/ASCO Methods in Clinical Cancer Research Workshop.

References:

1/ Von Hoff DD, Stephenson JJ Jr, Rosen P, et. al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010 Nov 20;28(33):4877-83. Epub 2010 Oct 4. PubMed PMID: 20921468.

2/ Doroshow JH. Selecting systemic cancer therapy one patient at a time: Is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol. 2010 Nov 20; 28(33):4869-71. Epub 2010 Oct 4. PMID: 20921466.

3/Addition of Dasatinib (Sprycel) to Standard Chemo Cocktail May Enhance Effect in Certain Ovarian Cancers, by Paul Cacciatore, Libby’s H*O*P*E*™, April 19, 2009.

4/UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®), by Paul Cacciatore, Libby’s H*O*P*E*™, November 11, 2009.

5/BMS-345541 + Dasatinib Resensitizes Carboplatin-Resistant, Recurrent Ovarian Cancer Cells, by Paul Cacciatore, Libby’s H*O*P*E*™, July 1, 2010.

6/PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, by Paul Cacciatore, Libby’s H*O*P*E*™, April 23, 2010.

7/ Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriersN Engl J Med. 2009 Jul 9;361(2):123-34. Epub 2009 Jun 24. PMID: 19553641.

8/Audeh MW, Penson RT, Friedlander M, et al. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol 2009;27(supplement):p. 15S.

9/PARP Inhibitor MK-4827 Shows Anti-Tumor Activity in First Human Clinical Study, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 17, 2010.

10/PI3K Pathway: A Potential Ovarian Cancer Therapeutic Target?, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 20, 2009.

11/Endocyte’s EC145 Produces Significant Anti-Tumor Activity In Advanced Stage Chemoresistant Ovarian Cancer Patients, by Paul Cacciatore, Libby’s H*O*P*E*™, October 21, 2009.

12/Massachusetts General Hospital Cancer Center To Genetically Profile All Patient Tumors, by Paul Cacciatore, Libby’s H*O*P*E*™, March 14, 2009.

13/Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results, by Paul Cacciatore, Libby’s H*O*P*E*™, August 3, 2010.

14/An Initiative for Molecular Profiling in Advanced Cancer Therapy (IMPACT) Trial. A Molecular Profile-Based Study in Patients With Advanced Cancer Treated in the Investigational Cancer Therapeutics Program, University of Texas M.D. Anderson Cancer Center, ClinicalTrials.gov Identifier: NCT00851032.

15/Dana-Farber Researchers “OncoMap” The Way To Personalized Treatment For Ovarian Cancer, by Paul Cacciatore, Libby’s H*O*P*E*™, November 16, 2010.

Sources:

Additional Information:

New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition

U.K. researchers develop a new test that could be used to select ovarian cancer patients who will benefit from a new class of drugs called “PARP inhibitors.”

U.K. researchers have developed a new test that could be used to select which patients with ovarian cancer will benefit from a new class of drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors,” according to preclinical research presented at the National Cancer Research Institute (NCRI) Cancer Conference held in Liverpool on November 8th.  According to the test results, approximately 50 percent of all patients with ovarian cancer may benefit from PARP inhibitors.

Dr. Asima Mukhopadhyay Discusses Her Research Into A More Tailored Treatment For Ovarian Cancer

PARP Inhibition & BRCA Gene Mutations: Exploiting Ovarian Cancer’s Inherent Defects

  • Genetics 101

DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called “genes.”

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein. Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene. Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

  • Targeting DNA Repair Through PARP Inhibition

Targeting DNA repair through PARP inhibition in BRCA gene-mutated cancer cells. "DSB" stands for DNA "Double Stand Break." (Photo Credit: AstraZeneca Oncology)

Normally functioning BRCA1 and BRCA2 genes are necessary for DNA repair through a process known as “homologous recombination” (HR).  HR is a form of genetic recombination in which two similar DNA strands exchange genetic material. This process is critical to a cell’s ability to repair its DNA in the event that it becomes damaged, so the cell can continue to function.

A cell’s DNA structure can be damaged by a wide variety of intentional (i.e., select cancer treatments) or unintentional (ultraviolet light, ionizing radiation, man-made chemicals, etc.) factors.  For example, chemotherapy regimens used in the treatment of cancer, including alkylating agents, topoisomerase inhibitors, and platinum drugs, are designed to damage DNA and prevent cancer cells from reproducing.

In approximately 10 percent of inherited ovarian cancers, the BRCA 1 or BRCA2 gene is damaged or mutated.  When the BRCA1 or BRCA2 gene is mutated, a backup type of DNA repair mechanism called “base-excision repair” usually compensates for the lack of DNA repair by HR.  Base-excision repair represents a DNA “emergency repair kit.” DNA repair enzymes such as PARP, whose activity and expression are upregulated in tumor cells, are believed to dampen the intended effect of chemotherapy and generate drug resistance.

When the PARP1 protein – which is necessary for base-excision repair – is inhibited in ovarian cancer cells possessing a BRCA gene mutation, DNA repair is drastically reduced, and the cancer cell dies through so-called “synthetic lethality.”  In sum, PARP inhibitors enhance the potential of chemotherapy (and radiation therapy) to induce cell death.  Healthy cells are unaffected if PARP is blocked because they either contain one or two working BRCA1 or BRCA2 genes which do an effective DNA repair job through use of HR.

  • PARP Inhibitors: A New Class of Targeted Therapy

PARP inhibitors represent a new, targeted approach to treating certain types of cancers. PARP inhibition has the potential to overwhelm cancer cells with lethal DNA damage by exploiting impaired DNA repair function inherent in some cancers, including breast and ovarian cancers with defects in the BRCA1 gene or BRCA 2 gene, and other DNA repair molecules. Inhibition of PARP leads to the cell’s failure to repair single strand DNA breaks, which, in turn, causes double strand DNA breaks. These effects are particularly detrimental to cancer cells that are deficient in repairing double strand DNA breaks and ultimately lead to cancer cell death.

PARP inhibitors are the first targeted treatment to be developed for women with inherited forms of breast and ovarian cancer carrying faults or mutations in a BRCA gene. Early results from clinical trials are showing promise for patients with the rare inherited forms of these cancers.

Study Hypothesis: PARP Inhibitors May Be Effective Against a Large Proportion of Non-Inherited Ovarian Cancers

As noted above, PARP inhibitors selectively target HR–defective cells and have shown good clinical activity in hereditary breast and ovarian cancers associated with BRCA1 or BRCA2 mutations. The U.K. researchers hypothesized that a high proportion (up to 50%) of sporadic (non-inherited) epithelial ovarian cancers could be deficient in HR due to genetic or epigenetic inactivation of the BRCA1, BRCA2, or other HR-related genes, which occur during a woman’s lifetime. Therefore, PARP inhibitors could prove beneficial to a larger group of ovarian cancer patients, assuming a patient’s HR status can be properly identified.

To test this hypothesis, the U.K. researchers developed a functional assay to test the HR status of primary ovarian cancer cultures derived from patients’ ascitic fluid. The test, referred to as the “RAD51 assay,” scans the cancer cells and identifies which tumor samples contain defective DNA repair ability (i.e., HR-deficient) which can be targeted by the PARP inhibitor. The researchers tested the HR status of each culture, and then subjected each one to in vitro cytotoxicity testing using the potent PARP inhibitor PF-01367338 (formerly known as AG-14699).

Study Results: 90% of HR-Deficient Ovarian Cancer Cultures Respond to PARP Inhibition

Upon testing completion, the U.K. researchers discovered that out of 50 primary cultures evaluated for HR status and cytotoxicity to the PARP inhibitor, approximately 40% of the cultures evidenced normal HR activity, while 60 percent of the cultures evidenced deficient HR activity. Cytotoxicity to PARP inhibitors was observed in approximately 90 percent of the HR deficient cultures, while no cytotoxicity was seen in the cultures that evidenced normal HR activity. Specifically, the PARP inhibitor PF-01367338 was found to selectively block the spread of ovarian tumor cells with low RAD51 expression.

Conclusion

Based upon the findings above, the U.K. researchers concluded that HR-deficient status can be determined in primary ovarian cancer, and that such status correlates with in vitro response to PARP inhibition.  Accordingly, the researchers concluded that potentially 50 to 60 percent of ovarian cancers could benefit from PARP inhibitors, but they note that use of the RAD51 assay as a biomarker requires additional clinical trial testing.  Although the RAD51 assay test that was used by the U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Upon presentation of the testing results, Dr. Asima Mukhopadhyay said:

“Our results show that this new test is almost 100 percent effective in identifying which ovarian cancer patients could benefit from these promising new drugs.  We have only been able to carry out this work because of the great team we have here which includes both doctors and scientists.”

The team based at Queen Elizabeth Hospital, Gateshead and the Newcastle Cancer Centre at the NICR, Newcastle University collaborated with Pfizer to develop the new assay to test tumor samples taken from ovarian cancer patients when they had surgery.

Dr. Mukhopadhyay added:

“Now we hope to hone the test to be used directly with patients and then carry out clinical trials. If the trials are successful we hope it will help doctors treat patients in a personalised and targeted way based on their individual tumour. It is also now hoped that PARP inhibitors will be useful for a broad range of cancers and we hope this test can be extended to other cancer types.”

Dr. Lesley Walker, Cancer Research UK’s director of cancer information, said:

“It’s exciting to see the development of promising new ‘smart’ drugs such as PARP inhibitors. But equally important is the need to identify exactly which sub-groups of patients will benefit from these new treatments. Tests like this will become invaluable in helping doctors get the most effective treatments quickly to patients, sparing them from unnecessary treatments and side effects.”

Sources:

Additional Information:

________________________________________

About The Researchers

Dr. Asima Mukhopadhyay is a doctor and clinical research fellow working at the Queen Elizabeth Hospital, Gateshead and the Northern Institute for Cancer Research at Newcastle University. Queen Elizabeth Hospital is run by Gateshead Health NHS Foundation Trust and is the home for gynecological oncology for the North East of England and Cumbria. She received a bursary to attend the conference, which was awarded on the merit of her work.

Key researchers on the study included Dr. Richard Edmondson, who was funded by the NHS, and Professor Nicola Curtin, who was funded by the Higher Education Funding Council. Dr Asima Mukhopadhyay is funded by the NHS.

Dr Richard Edmondson is a consultant gynecological oncologist at the Northern Gynaecological Oncology Centre, Gateshead and a Senior Lecturer at the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, and is a member of the research team.

Nicola Curtin is Professor of Experimental Cancer Therapeutics at Newcastle University and is the principal investigator of this project.

Current and future work involves working closely with Pfizer. Pfizer developed one of the PARP inhibitors and supported this project.

About The Newcastle Cancer Centre

The Newcastle Cancer Centre at the Northern Institute for Cancer Research is jointly funded by three charities: Cancer Research UK, Leukaemia and Lymphoma Research, and the North of England Children’s Cancer Research Fund.  Launched in July 2009, the Centre is based at the Northern Institute for Cancer Research at Newcastle University.  The Centre brings together some of the world’s leading figures in cancer research and drug development. They play a crucial role in delivering the new generation of cancer treatments for children and adults by identifying new drug targets, developing new drugs and verifying the effectiveness and safety of new treatments. This collaborative approach makes it easier for researchers to work alongside doctors treating patients, allowing promising new treatments to reach patients quickly.

About the NCRI Cancer Conference

The National Cancer Research Institute (NCRI) Cancer Conference is the UK’s major forum for showcasing the best British and international cancer research. The Conference offers unique opportunities for networking and sharing knowledge by bringing together world leading experts from all cancer research disciplines. The sixth annual NCRI Cancer Conference was held from November 7-10, 2010 at the BT Convention Centre in Liverpool. For more information visit www.ncri.org.uk/ncriconference.

About the NCRI

The National Cancer Research Institute (NCRI) was established in April 2001. It is a UK-wide partnership between the government, charity and industry which promotes cooperation in cancer research among the 21 member organizations for the benefit of patients, the public and the scientific community. For more information visit www.ncri.org.uk.

NCRI members include: the Association of the British Pharmaceutical Industry (ABPI); Association for International Cancer Research; Biotechnology and Biological Sciences Research Council; Breakthrough Breast Cancer; Breast Cancer Campaign; CancerResearch UK; CHILDREN with LEUKAEMIA, Department of Health; Economic and Social Research Council; Leukaemia & Lymphoma Research; Ludwig Institute for Cancer Research; Macmillan Cancer Support; Marie Curie Cancer Care; Medical Research Council; Northern Ireland Health and Social Care (Research & Development Office); Roy Castle Lung Cancer Foundation; Scottish Government Health Directorates (Chief Scientist Office);Tenovus; Welsh Assembly Government (Wales Office of Research and Development for Health & Social Care); The Wellcome Trust; and Yorkshire Cancer Research.

ESMO Clinical Practice Guidelines Regarding BRCA Gene Mutations, Ovarian Cancer & Supportive Cancer Care

The European Society for Medical Oncology (ESMO) is the leading European professional organization committed to advancing the specialty of medical oncology, and promoting a multidisciplinary approach to cancer treatment and care. …  The ESMO Clinical Practice Guidelines include coverage of  (i) BRCA gene mutations in breast and ovarian cancer, (ii) gynecologic tumors, and (iii) supportive cancer care …

The European Society for Medical Oncology (ESMO) is the leading European professional organization committed to advancing the specialty of medical oncology, and promoting a multidisciplinary approach to cancer treatment and care.  Since its founding in 1975 as a non-profit organization, ESMO’s mission is to support oncology professionals in providing people with cancer the most effective treatments available at the highest quality of care.

Formerly known as the ESMO Clinical Recommendations, the ESMO Clinical Practice Guidelines (CPG) are intended to provide users with a set of requirements for the highest standard of care for cancer patients. The ESMO CPG represent vital, evidence-based information including the incidence of the malignancy, diagnostic criteria, staging of disease and risk assessment, treatment plans and follow-up.

A growing number of the new guidelines were developed using large, multidisciplinary writing groups, ensuring optimal input from the oncology profession and better geographic representation.

For example, two revised guidelines address the prevention of chemotherapy- and radiotherapy–induced nausea and vomiting, developed as a result of the 3rd Perugia Consensus Conference organized by the Multinational Association of Supportive Care in Cancer (MASCC) and ESMO.

The new guidelines published this month and available online represent the first stage of a process that will include recommendations for more than 55 different clinical situations, covering almost all tumor types as well as various other topics including the therapeutic use of growth factors.

The ESMO Clinical Practice Guidelines include coverage of  (i) BRCA gene mutations in breast and ovarian cancer, (ii) gynecologic tumors, and (iii) supportive cancer care, as provided below.

Breast Cancer

Gynecologic Tumors

Supportive Care

Sources:

On the Path to Early Detection: Fox Chase & Sloan-Kettering Researchers Identify Early Ovarian Cancers

Researchers at the Fox Chase Cancer Center and the Memorial Sloan-Kettering Cancer Center discover early tumors and precancerous lesions in cysts that fold into the ovary from its surface, called inclusion cysts. “This is the first study giving very strong evidence that a substantial number of ovarian cancers arise in inclusion cysts and that there is indeed a precursor lesion that you can see, put your hands on, and give a name to,” says Jeff Boyd, PhD, Chief Scientific Officer at Fox Chase and lead author on the study …

Ovarian cancer kills nearly 15,000 women in the United States each year, and fewer than half of the women diagnosed with the disease survive five years. A screening test that detects ovarian cancer early, when it is still treatable, would likely reduce the high mortality, yet scientists have not known where the tumors originate or what they look like. Now, researchers at Fox Chase Cancer Center think they have answered both questions. The study, published on April 26th in PLoS ONE, reports that they have uncovered early tumors and precancerous lesions in cysts that fold into the ovary from its surface, called inclusion cysts.

Jeff Boyd, Ph.D., Professor, Chief Scientific Officer & Senior Vice President, The Robert C. Young, MD, Chair in Cancer Research, Fox Chase Cancer Center

“This is the first study giving very strong evidence that a substantial number of ovarian cancers arise in inclusion cysts and that there is indeed a precursor lesion that you can see, put your hands on, and give a name to,” says Jeff Boyd, PhD, Chief Scientific Officer at Fox Chase and lead author on the study, which also involved colleagues at the Memorial Sloan-Kettering Cancer Center. “Ovarian cancer most of the time seems to arise in simple inclusion cysts of the ovary, as opposed to the surface epithelium.”

Clinicians and researchers have been looking for early ovarian tumors and the precancerous lesions from which they develop for years without success. In this study, Boyd and colleagues used a combination of traditional microscopy and molecular approaches to reveal the early cancers.

“Previous studies only looked at this at the morphologic level, looking at a piece of tissue under a microscope,” Boyd says. “We did that but we also dissected away cells from normal ovaries and early stage cancers, and did genetic analyses. We showed that you could follow progression from normal cells to the precursor lesion, which we call dysplasia, to the actual cancer, and see them adjacent to one another within an inclusion cyst.”

To learn where and how the tumors arise, the team examined ovaries removed from women with BRCA mutations, who have a 40% lifetime risk of developing ovarian cancer, and from women without known genetic risk factors. In both groups, they found that gene expression patterns were dramatically different in cells in the inclusion cysts compared to the normal surface epithelium cells, including increased expression of genes that control cell division and chromosome movement.

Moreover, when they used a technique called FISH (fluorescence in situ hybridization), which can be used to identify individual chromosomes in cells, they saw that cells from very early tumors and precursor lesions frequently carried extra chromosomes. In fact, the team found that 9% of the normal cells isolated from the cysts had extra chromosomes, even though the tissue appeared completely benign under the microscope. By contrast, virtually none of the cells isolated from the surface of the ovary, which was previously thought to be the site of early ovarian cancers, carried extra chromosomes.

With these new data on the origin of ovarian cancer in hand, Boyd and others can now start to develop screening tests, perhaps based on molecular imaging, that could be used to detect early ovarian cancers in asymptomatic women.

Co-authors on the study include Bhavana Pothuri, Mario M. Leitao, Douglas A. Levine, Agnès Viale, Adam B. Olshen, Crispinita Arroyo, Faina Bogomolniy, Narciso Olvera, Oscar Lin, Robert A. Soslow, Mark E. Robson, Kenneth Offit, and Richard R. Barakat of Memorial Sloan-Kettering Cancer Center.

About the Fox Chase Cancer Center

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation’s first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center’s nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Sources:

PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity

Olaparib (AZD2281), a new type of cancer drug known as a “PARP inhibitor,” produced promising results in patients with platinum-refractory, platinum-resistant, and platinum-sensitive ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation.

A new type of cancer drug — known as a “PARP inhibitor” — produced promising results in patients with ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation. The trial results were published online in the Journal of Clinical Oncology on April 19th.

Scientists at The Institute of Cancer Research (ICR) and The Royal Marsden Hospital, working with pharmaceutical company KuDOS Pharmaceuticals, now a subsidiary of AstraZeneca, found the experimental drug olaparib shrank or stabilized tumors in approximately half of ovarian cancer patients possessing BRCA1 or BRCA2 mutations.

The five-year survival rate for ovarian cancer is just 40 per cent as the majority of patients are diagnosed with an advanced form of the disease. Most patients initially respond well to radical surgery and platinum and taxane-based chemotherapy, but relapse after an average of 18 months. Subsequent treatments generally become less effective as patients build up resistance.

Professor Stan Kaye, Head of Section of Medicine, Institute of Cancer Research; Head of Drug Development Unit, The Royal Marsden Hospital; and Cancer Research UK-funded scientist

“There is an urgent need to find new drugs for women diagnosed with ovarian cancer,” says Professor Stan Kaye, Head of the Section of Medicine at the ICR and Head of the Drug Development Unit at The Royal Marsden Hospital and a Cancer Research UK-funded scientist. “Olaparib is still in early-stage testing but the results so far are very encouraging. These findings raise the possibility that carefully selected patients in future may well be offered olaparib as an alternative to chemotherapy during the course of their treatment.”

Between 2005 and 2008, about 50 women with confirmed or suspected BRCA1 or BRCA2 mutations began treatment with olaparib in a dose escalation and single-stage expansion of a Phase I trial. Twenty patients responded with their tumors shrinking or with significant falls in their ovarian cancer marker CA125, or both. The disease also stabilized in three patients. The drug was effective for an average of seven months. Notably, several patients are still taking olaparib (for nearly two years). Drug side-effects were generally mild, especially when compared to current chemotherapy treatments.

Olaparib is a new type of drug known as a PARP inhibitor that works by turning a tumor’s specific genetic defect against itself. In susceptible cells, olaparib prevents the repair of naturally occurring breaks in DNA, which healthy cells are able to repair. Susceptible cancer cells – those with an existing defect in a DNA repair pathway caused by a mutation in the BRCA1 or BRCA2 genes – are unable to repair themselves, and therefore, die.

Platinum-based chemotherapy, particularly carboplatin, is one of the main treatments used for ovarian cancer. When this treatment ceases to be effective, theoretically, olaparib might be less effective too, so the ICR scientists examined whether olaparib would still benefit patients whose response to previous platinum-based drugs was limited. Finding new drugs to treat these “platinum-resistant” ovarian cancer patients (those who relapsed within six months of previous platinum therapy) is a particularly high priority as they have a lower chance of benefiting from re-treatment with chemotherapy and a poorer prognosis.

The research team found that the clinical benefit rate with olaparib was indeed higher — 70% — among patients with “platinum-sensitive disease” (disease recurrence more than six months after previous platinum therapy). Crucially, however, the clinical benefit rate was still 46% in platinum resistant patients.

ICR Study Findings:

  • 50 patients participated in the study (13 had platinum-sensitive disease, 24 had platinum-resistant disease, and 13 had platinum-refractory disease (according to platinum-free interval).
  • 20 patients (40%) achieved complete or partial responses under RECIST (Response Evaluation Criteria in Solid Tumors) criteria and/or tumor marker (CA125) responses.
  • Overall clinical benefit rate (complete response + partial response + stable disease) = 46%.
  • Median response duration was 28 weeks.
  • There was a significant association between the clinical benefit rate and platinum-free interval across the platinum-sensitive, resistant, and refractory patient subgroups (69%, 45%, and 23%, respectively).
  • Analyses indicated associations between platinum sensitivity and extent of olaparib response.
  • CONCLUSION: Olaparib has antitumor activity in BRCA1/2 mutation ovarian cancer, which is associated with platinum sensitivity.

Up to 15 per cent of breast and ovarian cancers have known BRCA1 or BRCA2 mutations on blood testing and, importantly, laboratory data strongly suggests that olaparib may also be effective in cancers linked to DNA repair defects not caused by BRCA1 and BRCA2 mutations. This could apply in about half the cases of the most common histological type of ovarian cancer.

“We have good reason for thinking that the benefit seen with olaparib in BRCA mutation-linked ovarian cancer may well extend to a broader population of patients with this disease,” says Professor Kaye.

Randomised trials of olaparib – in which some patients receive the drug and others a placebo – are underway and results will be available later this year.

KuDOS Pharmaceuticals (a wholly owned subsidiary of AstraZeneca) was the major funder of the trial, along with Cancer Research UK and the National Institute for Health Research. Olaparib was identified and developed at KuDOS Pharmaceuticals and subsequently at AstraZeneca.

PARP Inhibitor Clinical Trials:

To view a list of open ovarian cancer clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open solid tumor clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open ovarian cancer clinical trials that are testing various PARP inhibitors, click here.

To view a list of open solid tumor clinical trials that are testing various PARP inhibitors, click here.

About The Institute of Cancer Research (ICR)

* The ICR is Europe’s leading cancer research centre.

* The ICR has been ranked the UK’s top academic research centre, based on the results of the Higher Education Funding Council’s Research Assessment Exercise.

* The ICR works closely with partner The Royal Marsden NHS Foundation Trust to ensure patients immediately benefit from new research. Together the two organisations form the largest comprehensive cancer centre in Europe.

* The ICR has charitable status and relies on voluntary income, spending 95 pence in every pound of total income directly on research.

* As a college of the University of London, the ICR also provides postgraduate higher education of international distinction.

* Over its 100-year history, the ICR’s achievements include identifying the potential link between smoking and lung cancer which was subsequently confirmed, discovering that DNA damage is the basic cause of cancer and isolating more cancer-related genes than any other organization in the world.

* The ICR is home to the world’s leading academic drug development team. Several important anti-cancer drugs used worldwide were synthesised at the ICR and it has discovered an average of two preclinical candidates each year over the past five years.

For more information visit www.icr.ac.uk.

About The Royal Marsden Hospital

The Royal Marsden opened its doors in 1851 as the world’s first hospital dedicated to cancer treatment, research and education. Today, together with its academic partner, The Institute of Cancer Research, it is the largest and most comprehensive cancer centre in Europe treating over 40,000 patients every year. It is a centre of excellence, and the only NHS Trust to achieve the highest possible ranking in the Healthcare Commission’s Annual Health Check for the third year in a row. Since 2004, the hospital’s charity, The Royal Marsden Cancer Campaign, has helped raise over £43 million to build theatres, diagnostic centres, and drug development units. Prince William became President of The Royal Marsden in 2007, following a long royal connection with the hospital.

For more information, visit www.royalmarsden.nhs.uk

About Cancer Research UK

* Cancer Research UK is the world’s leading charity dedicated to beating cancer through research.

* The charity’s groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.

* Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last thirty years.

* Cancer Research UK supports research into all aspects of cancer through the work of more than 4,800 scientists, doctors and nurses.

* Together with its partners and supporters, Cancer Research UK’s vision is to beat cancer.

For further information about Cancer Research UK’s work or to find out how to support the charity, please call 020 7121 6699 or visit www.cancerresearchuk.org

About Experimental Cancer Medicine Centre (ECMC)

Experimental Cancer Medicine Centre (ECMC) status has been awarded to 19 centres in the UK that are specialist centres conducting research into new cancer treatments. The aim is to bring together cancer doctors, research nurses and lab scientists to make clinical trials of new treatments quicker and easier. The ECMC initiative is funded by Cancer Research UK and the Departments of Health of England, Scotland, Wales and Northern Ireland. Together they are giving a total of £35 million pounds over five years to the 19 centres. The centres will use this money to run trials of new and experimental treatments. They will also analyse thousands of blood and tissue samples (biopsies) to help find out more about how treatments work and what happens to cancer cells.

Sources:


Researchers Identify A New Breast & Ovarian Cancer Susceptibility Gene

German researchers identify a new breast and ovarian cancer susceptibility gene known as “RAD51C.”  The risk for breast cancer in women with the RAD51C mutation is 60 to 80 percent, while the risk for ovarian cancer is 20 to 40 percent.

The discovery 15 years ago that the genes BRCA1 and BRCA2 confer high risks for breast and ovarian cancer was a breakthrough for cancer prediction and therapy, especially for familial cases.  Now the research group of Prof. Alfons Meindl (Klinikum rechts der Isar of the Technische Universitaet Muenchen), in collaboration with other groups from Germany, the U.K., and the U.S., can identify another gene that increases susceptibility to breast and ovarian cancer. Their results have been published online in Nature Genetics. The identification of such high risk-conferring genes is a prerequisite for offering women tailored early recognition programs and more individualized therapies.

The gene newly identified as causing breast and ovarian cancer in familial cases is designated RAD51C. It is, like BRCA1 and BRCA2, essential for DNA repair within cells. Mutations in the gene can therefore cause either breast or ovarian cancer. In index cases from 1,100 German families with gynecological malignancies, six mutations within the RAD51C gene were found exclusively in 480 pedigrees [i.e., family trees] with occurrence of breast and ovarian cancer. The six RAD51C mutations were not found in 620 pedigrees with breast cancer only, or in 2,912 healthy German controls.  The risk for breast cancer in women with mutation of RAD51C is 60 to 80 percent, while the risk for ovarian cancer is 20 to 40 percent. As the cancers in such families were diagnosed significantly earlier than in women who developed sporadic breast or ovarian cancer, experts might also call the newly identified gene BRCA3.

“These results reinforce our assumption that various rare gene mutations contribute to hereditary breast and ovarian cancer. The now known genes that predispose women to breast and/or ovarian cancer only explain 60 percent of the high-risk families,” says TUM Professor Alfons Meindl, Klinikum rechts der Isar, but novel technologies allow the rapid identification of other such rarely mutated disease-causing genes.

“We are also optimistic that in the future the individual breast cancer risks for the majority of women can be determined. These risk predictions will allow the offering of tailored prevention and small meshed early recognition programs. Risk-aligned prevention will become a new clinical area,” explains Prof. Dr. Rita Schmutzler of the University Hospital of Cologne, one of the other main authors of the article.

About Technische Universitaet Muenchen

Technische Universitaet Muenchen (TUM) is one of Germany’s leading universities. It has roughly 420 professors, 7,500 academic and non-academic staff (including those at the university hospital “Rechts der Isar”), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university. http://www.tum.de

About Klinikum rechts der Isar, Munich, Germany

The Klinikum rechts der Isar (on the right hand side of the river Isar) serves its patients with a highly skilled team of dedicated doctors, nurses, research scientists, and technical assistants. The Klinikum rechts der Isar is a university hospital of the Technische Universitaet Muenchen.  With a workforce of over 4,000 personnel, the university hospital is a renowned center for the care of the sick, for medical research, and for the teaching of medicine. The Klinikum rechts der Isar is composed of more than 30 separate clinics and departments treating some 45,000 in-house patients and 170,000 out-patients yearly. With more than 1,000 beds, the hospital covers the entire spectrum of modern medicine with state-of-the-art efficiency. Through the close cooperation between health care and research, the latest advances in medical techniques can be quickly integrated into patient treatment procedures.

Sources:

Elevated Proteins May Warn of Ovarian Cancer, But Sufficient Lead Time & Predictive Value Still Lacking

Fred Hutchinson Cancer Center researchers discovered that concentrations of the serum biomarkers CA125, human epididymis protein 4 (HE4), and mesothelin began to rise 3 years before clinical diagnosis of ovarian cancer, according to a new study published online December 30 in the Journal of the National Cancer Institute. However, the biomarkers became substantially elevated only in the last year prior to diagnosis. … In an accompanying editorial to the study results reported by Anderson et. al., Patricia Hartge, ScD, of the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, applauds the researchers for taking the field one step closer to successful screening study designs by showing that the levels of certain biomarkers do not increase early enough to be used for screening.

Fred Hutchinson Cancer Center researchers discovered that concentrations of the serum biomarkers CA125, human epididymis protein 4 (HE4), and mesothelin began to rise 3 years before clinical diagnosis of ovarian cancer, according to a new study published online December 30 in the Journal of the National Cancer Institute (JNCI). [1] However, the biomarkers became substantially elevated only in the last year prior to diagnosis.

Garnet L. Anderson, Ph.D., Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.

CA125, HE4, mesothelin, B7-H4, decoy receptor 3, and spondin-2 have been identified as potential ovarian cancer serum biomarkers, but their behavior in the prediagnostic period, with the exception of CA125, has not been evaluated.  In the JNCI study, Garnet L. Anderson, Ph.D., of the Division of Public Health Sciences at the Fred Hutchinson Cancer Research Center in Seattle, and colleagues analyzed prediagnostic serum samples and patient data from the Carotene and Retinol Efficacy Trial (CARET), a randomized, double-blind, placebo-controlled chemoprevention trial testing the effects of beta-carotene and retinol on lung cancer incidence among individuals at high risk for lung cancer. Prediagnostic serum samples (taken up to 18 years prior to diagnosis) were obtained for 34 CARET patients with ovarian cancer and 70 matched control CARET subjects. Changes in the levels of these biomarkers prior to ovarian cancer diagnosis were analyzed.

Anderson et. al. discovered that concentrations of CA125, HE4, and mesothelin (but not B7-H4, decoy receptor 3, and spondin-2) began to increase slightly in cancer patients relative to control subjects approximately 3 years before diagnosis, but became substantially elevated within one year prior to diagnosis. Thus, the diagnostic value of these biomarkers is limited because accuracy only increased shortly before diagnosis. “Although these markers are not accurate enough to prompt early intervention in existing screening protocols, the multivariable regression analyses identified modest but statistically significant increases in risk associated with CA125, HE4, and mesothelin, which are consistent with many of the established epidemiological risk factors for ovarian cancer,” say the authors of the study.

“I still think biomarkers may play a role in a cost-effective screening program, although none of these seem accurate enough either alone or together to justify their use in average-risk women,” Anderson told Medscape Oncology. “I do not know of any other currently identified biomarkers that hold more promise than these, but there has been a massive effort over the last few years to identify candidates and not all have been thoroughly vetted,” said Dr. Anderson.

One problem, cites Dr. Anderson, may lie in the approach used in identifying potential ovarian cancer biomarkers. “Most of the discovery work done so far has been conducted in women with advanced-stage disease and compared them to healthy women,” she explained. “If discovery work were done in samples like the ones we used here, representing specimens collected months to years prior to the advanced stage diagnosis, we might have a better chance of finding earlier signals of aggressive disease.”

Another opportunity for improving screening and early diagnosis lies in imaging, she adds. “Currently the most common and only affordable imaging option that could be considered for routine screening is transvaginal ultrasound, but it performs poorly in terms of accurately determining those women [who] have ovarian cancer from those who do not,” said Dr. Anderson. “A substantial improvement in this area would be very exciting.”

Study Limitations Cited By JNCI Editors

The JNCI editors state three limitations that they believe are associated with the study by Anderson et. al. First, the study sample size was small.  Second, all women who participated in CARET had a history of heavy smoking, and therefore, the JNCI editors believe that the blood serum testing results obtained by Anderson et. al. may not apply to other non-smoking groups. Third, the blood collected from women participating in CARET was collected at different times, but only a few samples were collected during the last 2–3 years before ovarian cancer diagnosis.

Designing Ovarian Cancer Early Detection Programs — Accompanying JNCI Editorial

Patricia Hartge, Sc.D. Deputy Director, Epidemiology and Biostatistics Program, Division of Cancer Epidemiology & Genetic, National Cancer Institute

In an accompanying editorial to the study results reported by Anderson et. al., Patricia Hartge, ScD, of the Division of Cancer Epidemiology and Genetics at the National Cancer Institute, applauds the researchers for taking the field one step closer to successful screening study designs by showing that the levels of certain biomarkers do not increase early enough to be used for screening. [2]

Dr. Hartge notes that despite the discovery that CA125 and other serum markers increase before the clinical onset of ovarian cancer, it has been exceedingly difficult to devise a successful ovarian cancer early screening program for asymptomatic women. Nevertheless, Hartge believes that Anderson et al. take a valuable step toward the design of such a successful screening program by demonstrating why screening regimens that are based on markers, or panels of markers, can fail. Specifically, the researchers discovered that blood levels of CA125, HE4, mesothelin, and three other promising markers did not increase early enough in the course of the disease to allow detection in early stages. Dr. Hartge emphasizes that the markers typically rose within one year of the disease symptoms that led to an accurate diagnosis, and therefore, many of the ovarian cancer patients were diagnosed with advanced stage disease.

Hartge further states “[t]hat the results of Anderson et al. are not the last word in serum markers or in combinations of markers.” “Serum markers likely will form a key element in any screening regimen, with the lead time and other parameters of each marker or combination of markers being taken into account. The careful evaluation technique applied in the current study fits into a staged approach necessary for testing performance of early markers of disease.” Hartge adds that “[o]nly the time-consuming, expensive, and demanding randomized clinical trial can reveal whether an early detection program that includes the biomarkers can save lives.”

In support of her position, Dr. Hartge observes that current randomized trials are testing the value of different screening programs that are built on combinations of CA125, ultrasound, and risk factor data (e.g., family history and age). After four rounds of screening 34,261 postmenopausal women for ovarian cancer with both CA125 and ultrasound, University of Alabama at Birmingham School of Medicine investigators of the large U.S. screening trial observed that the predictive value of a positive screen was quite low — approximately 1%. Of the 60 screen-detected cancers, 72% had already advanced to at least stage III. [3] In addition, of every 20 women who underwent surgery after a positive screen, only one women was diagnosed with cancer. Furthermore, in a recent UK trial with a slightly different design, positive predictive values from the first round of screening were higher; 35% in the 50,078 women whose risk was assessed with CA125 and risk factor data, followed by ultrasound only if indicated, and 3% in the 50,639 women screened first with ultrasound. [4] The effects on mortality in both trials remain to be determined.

Confronting The “Daunting Arithmetic” Required To Detect Early Stage Ovarian Cancer

Based upon the foregoing, Dr. Hartge highlights the “daunting arithmetic” required to detect early stage ovarian cancer. In the U.S., Surveillance, Epidemiology and End Results (SEER) data indicates that incidence amounts to 13 cases of ovarian cancer per 100,000 woman per year, referred to by Dr. Hartge as the “proverbial needles in the haystack.” [5] So as not to present a problem without a potential solution, Hartge provides a roadmap to additional factors that may help future researchers develop early screening methods to identify those rare cases of ovarian cancer in the general population.  Notably, SEER data also indicates that incidence of ovarian cancer steadily increases with age from 21 cases per 100,000 women per year within the 50-54 age range to 57 cases per 100,000 women per year within the 80-84 age range. [6] Furthermore, family history, low parity, and more ovulations over a woman’s lifetime predict additional risk, with the strongest but least common predictor being a mutation in the BRCA1 or BRCA2 gene. Thus, the general approach suggested by Hartge focuses on women with higher baseline risks, for whom the predictive value of a positive serum test tends to increase. Dr. Hartge believes that the performance of an overall screening program will improve by targeting higher-risk subgroups of women for screening by combining personal history, genetic abnormality status, and levels of serum markers in one prediction model. With ongoing advances in understanding the origin and causes of ovarian cancer, Hartge states that the risk models that are useful for screening programs should also improve.

Further technology advancements may also improve future ovarian cancer early detection screening models, says Hartege. For example, a screening program that is based on a panel of biomarkers can be improved by developing new medical imaging technology that is more specific than current ultrasound technology.  If better imaging existed, fewer women would undergo surgery following a suspicious biomarker finding.  Similarly, development of less invasive surgery could further reduce harmful side effects.  Although Hartge observes that a highly accurate biomarker(s) or an overall screening program does not yet exist, she also explains that the current study by Anderson et. al., with its sobering implications, brings future researchers closer to understanding the crucial elements in designing an effective early detection program for ovarian cancer.

References:

1/Anderson GL , McIntosh M, Wu L, et. al. Assessing Lead Time of Selected Ovarian Cancer Biomarkers: A Nested Case–Control Study. Journal of the National Cancer Institute Advance Access published on January 6, 2010, DOI 10.1093/jnci/djp438. J. Natl. Cancer Inst. 102: 26-38.

2/Hartge P. Designing Early Detection Programs for Ovarian Cancer. Journal of the National Cancer Institute Advance Access published on January 6, 2010, DOI 10.1093/jnci/djp450. J. Natl. Cancer Inst. 102: 3-4.

3/Partridge E, Kreimer AR, Greenlee RT, et al. Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol (2009) 113(4):775–782. [PMCID: PMC2728067; PMID: 19305319].

4/Menon U, Gentry-Maharaj A, Hallett R, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol (2009) 10(4):327–340. [PMID: 19282241]

5/ Horner MJ, Ries LAG, Krapcho M, et al, eds. SEER Cancer Stat Fact Sheets (2009) Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/statfacts/html/ovary.html. Accessed December 2, 2009.

6/Horner MJ, Ries LAG, Krapcho M, et. al., eds. SEER Cancer Statistics Review, 1975-2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006, based on November 2008 SEER data submission, posted to the SEER web site, 2009 [See Table 21.6: Incidence & Mortality Rates By Age].

Sources:

UA Research Team Designing Holographic Imaging System For Ovarian Cancer

University of Arizona researchers Jennifer Barton and Ray Kostuk have received a five-year, $2.4 million grant from the National Institutes of Health to build the instrument that they hope will one day be used to monitor women at high risk for ovarian cancer.

Hologram of Human Ovary

Human ovary image captured with the use of the prototype holographic imaging system the team developed. (Photo: Univ. of Arizona News)

Hologram of An Orange

For comparison, an onion is imaged with the use of the prototype system the team developed. (Photo: Univ. of Arizona News)

Two University of Arizona [UA] researchers have formed a research team to design, build and evaluate two versions of an ovarian cancer medical imaging and screening instrument that will use holographic components in a new type of optical microscope.

Raymond Kostuk and Jennifer Barton have secured a five-year, $2.4 million grant from the National Institutes of Health to build the instrument that they hope will one day be used to monitor women at high risk for ovarian cancer. Kostuk is the Kenneth Von Behren Professor of Electrical and Computer Engineering and professor of optical sciences. Barton heads the UA department of biomedical engineering and is assistant director of the BIO5 Institute.

The system is unique in that it will for the first time project multiple spatial images from different depths within a tissue sample and simultaneously provide spectral information from optical markers in order to better identify cancerous cells.

This combined spectral spatial imaging technique shows potential to be much more effective in identifying cancerous tissue sites than by separately using spatial or spectral information.

The grant was issued following the successful two-year development of a prototype system the team built. It tests the validity of using holographic technology for subsurface imaging without having to perform surgery and take tissue samples.

According to the National Institutes of Health, there is, to date, no single effective screening test for ovarian cancer, so ovarian cancer is rarely diagnosed in its early stages. The result is that in more than 50 percent of women with ovarian cancer are diagnosed in the late stages of the disease when the cancer has already advanced.

  • About 76 percent percent of women with ovarian cancer survive one year after diagnosis.
  • About 45 percent live longer than 5 years after diagnosis.

Barton said ovarian cancer provides a compelling case to test holographic imaging and its efficacy in detecting cancers. At the present time the preferred treatment is surgery, which is also often needed to diagnose ovarian cancer. The procedure includes taking tissue samples, which may threaten the woman’s ability to have children in the future.

Jennifer Barton, UA

Jennifer Barton, Professor & Chair, Department of Biomedical Engineering; Assistant Director, BIO5 Institute. (Photo: Univ of Arizona News)

“Ovarian cancer has no symptoms until it is highly advanced making the five-year prognosis extremely poor. Those at high risk – with a family history of ovarian cancer or those who carry genetic mutations in the BRCA1 and BRCA2 genes, which normally help protect against both breast and ovarian cancer – may be counseled to have their ovaries removed through laparoscopic surgery,” Barton said. “Now imagine if you are an 18-year-old woman who has this history – ovaries are an important part of your overall health. They produce hormones you need over and above the notion that you would need your ovaries should you want to have children in the future.”

Thus, new technology capable of reliably diagnosing ovarian cancer in earlier stages could reduce the morbidity, high mortality and economic impact of this disease.

The system will work like a high-powered microscope that can be used to study tissue samples already removed. In addition, an endoscopic version is in the design stage to safely scan the ovaries for cancer during laparoscopic screenings in high-risk women, or as an adjunct to other laparoscopic procedures in all women.

The team will work with Dr. Kenneth D. Hatch, president of the Society of Pelvic Surgeons, and a professor of obstetrics and gynecology and director of female pelvic medicine and reconstructive surgery at the UA College of Medicine.

Through Hatch and a partnership with his patients who consent, Barton and Kostuk will be able to identify abnormal spatial and spectral markers of cancerous ovarian tissue.

Ray Kostuk

Ray Kostuk, Kenneth Von Behren Professor of Electrical and Computer Engineering & Professor of Optical Sciences, University of Arizona (Photo: Univ. of Arizona News)

The new imaging system will be tested on high-risk patients who are willing to participate and provide some future benefit to other patients who find themselves in a similar situation, Barton said.

Kostuk and Barton’s aim is to design the imaging system so that it is easy to use, requiring very little training, and also be cost effective.

“The system will image like an MRI or a CT scan but with much higher resolution than an ultrasonic image and will be a lot less expensive than an MRI. As an additional benefit no radiation will be used or exposed to sensitive ovary areas during the cancer screenings,” Kostuk said.

During the past 25 years Kostuk has researched different aspects of holography and holographic materials for use as optical elements.

The holographic imaging system being designed combines an optical technique that creates images capable of detecting subtle tissue microstructure changes. Together with fluorescence spectroscopy methods, the system has demonstrated capability for early cancer detection.

Another member of the team, UA research professor Marek Romanowski, with the UA department of biomedical engineering and the BIO5 Institute, is working on the development of targeted fluorescent dyes that will be used on tissue samples to identify or confirm suspected cancerous areas shown in the spatial image.

The multidisciplinary approach to the design of the hologram-based imaging system is a testament to the complexity of treating cancers.

“One of the advantages of being part of the UA is the ability to interact collaboratively with people in other disciplines,” Kotuk said. “Jennifer is a wonderful colleague who can identify important medical applications for new techniques and is able to bridge the gap between traditional engineering and medicine. Her skill and knowledge is critical to the success of the program,” he said.

“To solve the really interesting problems of today, no one person has all the expertise needed,” Barton added.

Sources: