New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition

U.K. researchers develop a new test that could be used to select ovarian cancer patients who will benefit from a new class of drugs called “PARP inhibitors.”

U.K. researchers have developed a new test that could be used to select which patients with ovarian cancer will benefit from a new class of drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors,” according to preclinical research presented at the National Cancer Research Institute (NCRI) Cancer Conference held in Liverpool on November 8th.  According to the test results, approximately 50 percent of all patients with ovarian cancer may benefit from PARP inhibitors.

Dr. Asima Mukhopadhyay Discusses Her Research Into A More Tailored Treatment For Ovarian Cancer

PARP Inhibition & BRCA Gene Mutations: Exploiting Ovarian Cancer’s Inherent Defects

  • Genetics 101

DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called “genes.”

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein. Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene. Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

  • Targeting DNA Repair Through PARP Inhibition

Targeting DNA repair through PARP inhibition in BRCA gene-mutated cancer cells. "DSB" stands for DNA "Double Stand Break." (Photo Credit: AstraZeneca Oncology)

Normally functioning BRCA1 and BRCA2 genes are necessary for DNA repair through a process known as “homologous recombination” (HR).  HR is a form of genetic recombination in which two similar DNA strands exchange genetic material. This process is critical to a cell’s ability to repair its DNA in the event that it becomes damaged, so the cell can continue to function.

A cell’s DNA structure can be damaged by a wide variety of intentional (i.e., select cancer treatments) or unintentional (ultraviolet light, ionizing radiation, man-made chemicals, etc.) factors.  For example, chemotherapy regimens used in the treatment of cancer, including alkylating agents, topoisomerase inhibitors, and platinum drugs, are designed to damage DNA and prevent cancer cells from reproducing.

In approximately 10 percent of inherited ovarian cancers, the BRCA 1 or BRCA2 gene is damaged or mutated.  When the BRCA1 or BRCA2 gene is mutated, a backup type of DNA repair mechanism called “base-excision repair” usually compensates for the lack of DNA repair by HR.  Base-excision repair represents a DNA “emergency repair kit.” DNA repair enzymes such as PARP, whose activity and expression are upregulated in tumor cells, are believed to dampen the intended effect of chemotherapy and generate drug resistance.

When the PARP1 protein – which is necessary for base-excision repair – is inhibited in ovarian cancer cells possessing a BRCA gene mutation, DNA repair is drastically reduced, and the cancer cell dies through so-called “synthetic lethality.”  In sum, PARP inhibitors enhance the potential of chemotherapy (and radiation therapy) to induce cell death.  Healthy cells are unaffected if PARP is blocked because they either contain one or two working BRCA1 or BRCA2 genes which do an effective DNA repair job through use of HR.

  • PARP Inhibitors: A New Class of Targeted Therapy

PARP inhibitors represent a new, targeted approach to treating certain types of cancers. PARP inhibition has the potential to overwhelm cancer cells with lethal DNA damage by exploiting impaired DNA repair function inherent in some cancers, including breast and ovarian cancers with defects in the BRCA1 gene or BRCA 2 gene, and other DNA repair molecules. Inhibition of PARP leads to the cell’s failure to repair single strand DNA breaks, which, in turn, causes double strand DNA breaks. These effects are particularly detrimental to cancer cells that are deficient in repairing double strand DNA breaks and ultimately lead to cancer cell death.

PARP inhibitors are the first targeted treatment to be developed for women with inherited forms of breast and ovarian cancer carrying faults or mutations in a BRCA gene. Early results from clinical trials are showing promise for patients with the rare inherited forms of these cancers.

Study Hypothesis: PARP Inhibitors May Be Effective Against a Large Proportion of Non-Inherited Ovarian Cancers

As noted above, PARP inhibitors selectively target HR–defective cells and have shown good clinical activity in hereditary breast and ovarian cancers associated with BRCA1 or BRCA2 mutations. The U.K. researchers hypothesized that a high proportion (up to 50%) of sporadic (non-inherited) epithelial ovarian cancers could be deficient in HR due to genetic or epigenetic inactivation of the BRCA1, BRCA2, or other HR-related genes, which occur during a woman’s lifetime. Therefore, PARP inhibitors could prove beneficial to a larger group of ovarian cancer patients, assuming a patient’s HR status can be properly identified.

To test this hypothesis, the U.K. researchers developed a functional assay to test the HR status of primary ovarian cancer cultures derived from patients’ ascitic fluid. The test, referred to as the “RAD51 assay,” scans the cancer cells and identifies which tumor samples contain defective DNA repair ability (i.e., HR-deficient) which can be targeted by the PARP inhibitor. The researchers tested the HR status of each culture, and then subjected each one to in vitro cytotoxicity testing using the potent PARP inhibitor PF-01367338 (formerly known as AG-14699).

Study Results: 90% of HR-Deficient Ovarian Cancer Cultures Respond to PARP Inhibition

Upon testing completion, the U.K. researchers discovered that out of 50 primary cultures evaluated for HR status and cytotoxicity to the PARP inhibitor, approximately 40% of the cultures evidenced normal HR activity, while 60 percent of the cultures evidenced deficient HR activity. Cytotoxicity to PARP inhibitors was observed in approximately 90 percent of the HR deficient cultures, while no cytotoxicity was seen in the cultures that evidenced normal HR activity. Specifically, the PARP inhibitor PF-01367338 was found to selectively block the spread of ovarian tumor cells with low RAD51 expression.

Conclusion

Based upon the findings above, the U.K. researchers concluded that HR-deficient status can be determined in primary ovarian cancer, and that such status correlates with in vitro response to PARP inhibition.  Accordingly, the researchers concluded that potentially 50 to 60 percent of ovarian cancers could benefit from PARP inhibitors, but they note that use of the RAD51 assay as a biomarker requires additional clinical trial testing.  Although the RAD51 assay test that was used by the U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Upon presentation of the testing results, Dr. Asima Mukhopadhyay said:

“Our results show that this new test is almost 100 percent effective in identifying which ovarian cancer patients could benefit from these promising new drugs.  We have only been able to carry out this work because of the great team we have here which includes both doctors and scientists.”

The team based at Queen Elizabeth Hospital, Gateshead and the Newcastle Cancer Centre at the NICR, Newcastle University collaborated with Pfizer to develop the new assay to test tumor samples taken from ovarian cancer patients when they had surgery.

Dr. Mukhopadhyay added:

“Now we hope to hone the test to be used directly with patients and then carry out clinical trials. If the trials are successful we hope it will help doctors treat patients in a personalised and targeted way based on their individual tumour. It is also now hoped that PARP inhibitors will be useful for a broad range of cancers and we hope this test can be extended to other cancer types.”

Dr. Lesley Walker, Cancer Research UK’s director of cancer information, said:

“It’s exciting to see the development of promising new ‘smart’ drugs such as PARP inhibitors. But equally important is the need to identify exactly which sub-groups of patients will benefit from these new treatments. Tests like this will become invaluable in helping doctors get the most effective treatments quickly to patients, sparing them from unnecessary treatments and side effects.”

Sources:

Additional Information:

________________________________________

About The Researchers

Dr. Asima Mukhopadhyay is a doctor and clinical research fellow working at the Queen Elizabeth Hospital, Gateshead and the Northern Institute for Cancer Research at Newcastle University. Queen Elizabeth Hospital is run by Gateshead Health NHS Foundation Trust and is the home for gynecological oncology for the North East of England and Cumbria. She received a bursary to attend the conference, which was awarded on the merit of her work.

Key researchers on the study included Dr. Richard Edmondson, who was funded by the NHS, and Professor Nicola Curtin, who was funded by the Higher Education Funding Council. Dr Asima Mukhopadhyay is funded by the NHS.

Dr Richard Edmondson is a consultant gynecological oncologist at the Northern Gynaecological Oncology Centre, Gateshead and a Senior Lecturer at the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, and is a member of the research team.

Nicola Curtin is Professor of Experimental Cancer Therapeutics at Newcastle University and is the principal investigator of this project.

Current and future work involves working closely with Pfizer. Pfizer developed one of the PARP inhibitors and supported this project.

About The Newcastle Cancer Centre

The Newcastle Cancer Centre at the Northern Institute for Cancer Research is jointly funded by three charities: Cancer Research UK, Leukaemia and Lymphoma Research, and the North of England Children’s Cancer Research Fund.  Launched in July 2009, the Centre is based at the Northern Institute for Cancer Research at Newcastle University.  The Centre brings together some of the world’s leading figures in cancer research and drug development. They play a crucial role in delivering the new generation of cancer treatments for children and adults by identifying new drug targets, developing new drugs and verifying the effectiveness and safety of new treatments. This collaborative approach makes it easier for researchers to work alongside doctors treating patients, allowing promising new treatments to reach patients quickly.

About the NCRI Cancer Conference

The National Cancer Research Institute (NCRI) Cancer Conference is the UK’s major forum for showcasing the best British and international cancer research. The Conference offers unique opportunities for networking and sharing knowledge by bringing together world leading experts from all cancer research disciplines. The sixth annual NCRI Cancer Conference was held from November 7-10, 2010 at the BT Convention Centre in Liverpool. For more information visit www.ncri.org.uk/ncriconference.

About the NCRI

The National Cancer Research Institute (NCRI) was established in April 2001. It is a UK-wide partnership between the government, charity and industry which promotes cooperation in cancer research among the 21 member organizations for the benefit of patients, the public and the scientific community. For more information visit www.ncri.org.uk.

NCRI members include: the Association of the British Pharmaceutical Industry (ABPI); Association for International Cancer Research; Biotechnology and Biological Sciences Research Council; Breakthrough Breast Cancer; Breast Cancer Campaign; CancerResearch UK; CHILDREN with LEUKAEMIA, Department of Health; Economic and Social Research Council; Leukaemia & Lymphoma Research; Ludwig Institute for Cancer Research; Macmillan Cancer Support; Marie Curie Cancer Care; Medical Research Council; Northern Ireland Health and Social Care (Research & Development Office); Roy Castle Lung Cancer Foundation; Scottish Government Health Directorates (Chief Scientist Office);Tenovus; Welsh Assembly Government (Wales Office of Research and Development for Health & Social Care); The Wellcome Trust; and Yorkshire Cancer Research.

Researchers Identify “Missing Link” Underlying DNA Repair & Platinum Drug Resistance

Researchers have discovered an enzyme crucial to a type of DNA repair that also causes resistance to a class of cancer drugs most commonly used against ovarian cancer.

Scientists from The University of Texas MD Anderson Cancer Center and the Life Sciences Institute of Zhejiang University in China report the discovery of the enzyme and its role in repairing DNA damage called “cross-linking” in the Science Express advance online publication of Science.

Junjie Chen, Ph.D., Professor and Chair, Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center

“This pathway that repairs cross-linking damage is a common factor in a variety of cancers, including breast cancer and especially in ovarian cancer. If the pathway is active, it undoes the therapeutic effect of cisplatin and similar therapies,” said co-corresponding author Junjie Chen, Ph.D., professor and chair of MD Anderson’s Department of Experimental Radiation Oncology.

The platinum-based chemotherapies such as cisplatin, carboplatin and oxaliplatin work by causing DNA cross-linking in cancer cells, which blocks their ability to divide and leads to cell death. Cross-linking occurs when one of the two strands of DNA in a cell branches out and links to the other strand.

Cisplatin and similar drugs are often initially effective against ovarian cancer, Chen said, but over time the disease becomes resistant and progresses.

Scientists have known that the protein complex known as FANCIFANCD2 responds to DNA damage and repairs cross-linking, but the details of how the complex works have been unknown. “The breakthrough in this research is that we finally found an enzyme involved in the repair process,” Chen said.

The enzyme, which they named FAN1, appears to be a nuclease, which is capable of slicing through strands of DNA.

In a series of experiments, Chen and colleagues demonstrated how the protein complex summons FAN1, connects with the enzyme and moves it to the site of DNA cross-linking. They also showed that FAN1 cleaves branched DNA but leaves the normal, separate double-stranded DNA alone. Mutant versions of FAN1 were unable to slice branched DNA.

Like a lock and key

The researchers also demonstrated that FAN1 cannot get at DNA damage without being taken there by the FANCI-FANCD2 protein complex, which detects and moves to the damaged site. The complex recruits the FAN1 enzyme by acquiring a single ubiquitin molecule. FAN1 connects with the complex by binding to the ubiquitin site.

“It’s like a lock and key system, once they fit, FAN1 is recruited,” Chen said.

Analyzing the activity of this repair pathway could guide treatment for cancer patients, Chen said, with the platinum-based therapies used when the cross-linking repair mechanism is less active.

Scientists had shown previously that DNA repair was much less efficient when FANCI and FANCD2 lack the single ubiquitin. DNA response and damage-repair proteins can be recruited to damage sites by the proteins’ ubiquitin-binding domains. The team first identified a protein that had both a ubiquitin-binding domain and a known nuclease domain. When they treated cells with mitomycin C, which promotes DNA cross-linking, that protein, then known as KIAA1018, gathered at damage sites. This led them to the functional experiments that established its role in DNA repair.

They renamed the protein FAN1, short for Fanconi anemia-associated nuclease 1. The FANCI-FANCD2 complex is ubiquitinated by an Fanconi anemia (FA) core complex containing eight FA proteins. These genes and proteins were discovered during research of FA, a rare disease caused by mutations in 13 fanc genes that is characterized by congenital malformations, bone marrow failure, cancer and hypersensitivity to DNA cross-linking agents.

Chen said the FANCI-FANCD2 pathway also is associated with the BRCA1 and BRCA2 pathways, which are involved in homologous recombination repair. Scientists know that homologous recombination repair is also required for the repair of DNA cross-links, but the exact details remain to be resolved, Chen said. Mutations to BRCA1 and BRCA2 are known to raise a woman’s risk for ovarian and breast cancers and are found in about 5-10 percent of women with either disease.

Co-authors with Chen are co-first author Gargi Ghosal, Ph.D., and Jingsong Yuan, Ph.D., also of Experimental Radiation Oncology at MD Anderson; and co-corresponding author Jun Huang, Ph.D., co-first author Ting Liu, Ph.D., of the Life Sciences Institute of Zhejiang University in Hangzhou, China.

This research was funded by a grant from the U.S. National Institutes of Health and the Startup Fund at Zhejiang University.

Sources:

PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity

Olaparib (AZD2281), a new type of cancer drug known as a “PARP inhibitor,” produced promising results in patients with platinum-refractory, platinum-resistant, and platinum-sensitive ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation.

A new type of cancer drug — known as a “PARP inhibitor” — produced promising results in patients with ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation. The trial results were published online in the Journal of Clinical Oncology on April 19th.

Scientists at The Institute of Cancer Research (ICR) and The Royal Marsden Hospital, working with pharmaceutical company KuDOS Pharmaceuticals, now a subsidiary of AstraZeneca, found the experimental drug olaparib shrank or stabilized tumors in approximately half of ovarian cancer patients possessing BRCA1 or BRCA2 mutations.

The five-year survival rate for ovarian cancer is just 40 per cent as the majority of patients are diagnosed with an advanced form of the disease. Most patients initially respond well to radical surgery and platinum and taxane-based chemotherapy, but relapse after an average of 18 months. Subsequent treatments generally become less effective as patients build up resistance.

Professor Stan Kaye, Head of Section of Medicine, Institute of Cancer Research; Head of Drug Development Unit, The Royal Marsden Hospital; and Cancer Research UK-funded scientist

“There is an urgent need to find new drugs for women diagnosed with ovarian cancer,” says Professor Stan Kaye, Head of the Section of Medicine at the ICR and Head of the Drug Development Unit at The Royal Marsden Hospital and a Cancer Research UK-funded scientist. “Olaparib is still in early-stage testing but the results so far are very encouraging. These findings raise the possibility that carefully selected patients in future may well be offered olaparib as an alternative to chemotherapy during the course of their treatment.”

Between 2005 and 2008, about 50 women with confirmed or suspected BRCA1 or BRCA2 mutations began treatment with olaparib in a dose escalation and single-stage expansion of a Phase I trial. Twenty patients responded with their tumors shrinking or with significant falls in their ovarian cancer marker CA125, or both. The disease also stabilized in three patients. The drug was effective for an average of seven months. Notably, several patients are still taking olaparib (for nearly two years). Drug side-effects were generally mild, especially when compared to current chemotherapy treatments.

Olaparib is a new type of drug known as a PARP inhibitor that works by turning a tumor’s specific genetic defect against itself. In susceptible cells, olaparib prevents the repair of naturally occurring breaks in DNA, which healthy cells are able to repair. Susceptible cancer cells – those with an existing defect in a DNA repair pathway caused by a mutation in the BRCA1 or BRCA2 genes – are unable to repair themselves, and therefore, die.

Platinum-based chemotherapy, particularly carboplatin, is one of the main treatments used for ovarian cancer. When this treatment ceases to be effective, theoretically, olaparib might be less effective too, so the ICR scientists examined whether olaparib would still benefit patients whose response to previous platinum-based drugs was limited. Finding new drugs to treat these “platinum-resistant” ovarian cancer patients (those who relapsed within six months of previous platinum therapy) is a particularly high priority as they have a lower chance of benefiting from re-treatment with chemotherapy and a poorer prognosis.

The research team found that the clinical benefit rate with olaparib was indeed higher — 70% — among patients with “platinum-sensitive disease” (disease recurrence more than six months after previous platinum therapy). Crucially, however, the clinical benefit rate was still 46% in platinum resistant patients.

ICR Study Findings:

  • 50 patients participated in the study (13 had platinum-sensitive disease, 24 had platinum-resistant disease, and 13 had platinum-refractory disease (according to platinum-free interval).
  • 20 patients (40%) achieved complete or partial responses under RECIST (Response Evaluation Criteria in Solid Tumors) criteria and/or tumor marker (CA125) responses.
  • Overall clinical benefit rate (complete response + partial response + stable disease) = 46%.
  • Median response duration was 28 weeks.
  • There was a significant association between the clinical benefit rate and platinum-free interval across the platinum-sensitive, resistant, and refractory patient subgroups (69%, 45%, and 23%, respectively).
  • Analyses indicated associations between platinum sensitivity and extent of olaparib response.
  • CONCLUSION: Olaparib has antitumor activity in BRCA1/2 mutation ovarian cancer, which is associated with platinum sensitivity.

Up to 15 per cent of breast and ovarian cancers have known BRCA1 or BRCA2 mutations on blood testing and, importantly, laboratory data strongly suggests that olaparib may also be effective in cancers linked to DNA repair defects not caused by BRCA1 and BRCA2 mutations. This could apply in about half the cases of the most common histological type of ovarian cancer.

“We have good reason for thinking that the benefit seen with olaparib in BRCA mutation-linked ovarian cancer may well extend to a broader population of patients with this disease,” says Professor Kaye.

Randomised trials of olaparib – in which some patients receive the drug and others a placebo – are underway and results will be available later this year.

KuDOS Pharmaceuticals (a wholly owned subsidiary of AstraZeneca) was the major funder of the trial, along with Cancer Research UK and the National Institute for Health Research. Olaparib was identified and developed at KuDOS Pharmaceuticals and subsequently at AstraZeneca.

PARP Inhibitor Clinical Trials:

To view a list of open ovarian cancer clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open solid tumor clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open ovarian cancer clinical trials that are testing various PARP inhibitors, click here.

To view a list of open solid tumor clinical trials that are testing various PARP inhibitors, click here.

About The Institute of Cancer Research (ICR)

* The ICR is Europe’s leading cancer research centre.

* The ICR has been ranked the UK’s top academic research centre, based on the results of the Higher Education Funding Council’s Research Assessment Exercise.

* The ICR works closely with partner The Royal Marsden NHS Foundation Trust to ensure patients immediately benefit from new research. Together the two organisations form the largest comprehensive cancer centre in Europe.

* The ICR has charitable status and relies on voluntary income, spending 95 pence in every pound of total income directly on research.

* As a college of the University of London, the ICR also provides postgraduate higher education of international distinction.

* Over its 100-year history, the ICR’s achievements include identifying the potential link between smoking and lung cancer which was subsequently confirmed, discovering that DNA damage is the basic cause of cancer and isolating more cancer-related genes than any other organization in the world.

* The ICR is home to the world’s leading academic drug development team. Several important anti-cancer drugs used worldwide were synthesised at the ICR and it has discovered an average of two preclinical candidates each year over the past five years.

For more information visit www.icr.ac.uk.

About The Royal Marsden Hospital

The Royal Marsden opened its doors in 1851 as the world’s first hospital dedicated to cancer treatment, research and education. Today, together with its academic partner, The Institute of Cancer Research, it is the largest and most comprehensive cancer centre in Europe treating over 40,000 patients every year. It is a centre of excellence, and the only NHS Trust to achieve the highest possible ranking in the Healthcare Commission’s Annual Health Check for the third year in a row. Since 2004, the hospital’s charity, The Royal Marsden Cancer Campaign, has helped raise over £43 million to build theatres, diagnostic centres, and drug development units. Prince William became President of The Royal Marsden in 2007, following a long royal connection with the hospital.

For more information, visit www.royalmarsden.nhs.uk

About Cancer Research UK

* Cancer Research UK is the world’s leading charity dedicated to beating cancer through research.

* The charity’s groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.

* Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last thirty years.

* Cancer Research UK supports research into all aspects of cancer through the work of more than 4,800 scientists, doctors and nurses.

* Together with its partners and supporters, Cancer Research UK’s vision is to beat cancer.

For further information about Cancer Research UK’s work or to find out how to support the charity, please call 020 7121 6699 or visit www.cancerresearchuk.org

About Experimental Cancer Medicine Centre (ECMC)

Experimental Cancer Medicine Centre (ECMC) status has been awarded to 19 centres in the UK that are specialist centres conducting research into new cancer treatments. The aim is to bring together cancer doctors, research nurses and lab scientists to make clinical trials of new treatments quicker and easier. The ECMC initiative is funded by Cancer Research UK and the Departments of Health of England, Scotland, Wales and Northern Ireland. Together they are giving a total of £35 million pounds over five years to the 19 centres. The centres will use this money to run trials of new and experimental treatments. They will also analyse thousands of blood and tissue samples (biopsies) to help find out more about how treatments work and what happens to cancer cells.

Sources:


Increased Ovarian Cancer Metastases Identified In Women With BRCA Gene Mutations; May Shed Light on New Treatment Approach

U.K. researchers have found that patients with hereditary ovarian cancer – whose tumors are caused by faulty BRCA1 or BRCA2 genes – are more likely to experience metastases of the liver, lung, spleen, and viscera. … [T]he researchers suggest that ovarian cancer patients whose tumors spread to the solid organs … should be tested for the faulty genes – BRCA1 and BRCA2 – to ensure they are given the most appropriate treatment.

Dr. Charlie Gourley, Acting Head, Medical Oncology, University of Edinburgh Cancer Research Centre

U.K. researchers have found that patients with hereditary ovarian cancer – whose tumors are caused by faulty BRCA1 or BRCA2 genes – are more likely to experience metastases of the liver, lungs, spleen, and viscera. This is despite the fact that their overall prognosis is better than other ovarian cancer patients.  The research is published in the April 20th online edition of the Journal of Clinical Oncology.

In the study, researchers discovered that the percentage of women with BRCA1 or BRCA2 gene mutations who experienced visceral, liver, lung, and splenic metastases were 58%, 42%, 16%, and 32% , respectively, as compared with 5%, 0%, 0%, and 3%, respectively, in non-BRCA gene deficient women.  The researchers note that sporadic (i.e., non-hereditary) ovarian tumors tend to remain within the lining of the abdomen and pelvis.

Based upon the study findings, the researchers suggest that ovarian cancer patients whose tumors spread to the solid organs such as the liver, lungs, and spleen should be tested for the faulty genes – BRCA1 and BRCA2 – to ensure they are given the most appropriate treatment.  For example, patients with hereditary tumors, which account for 10 per cent of ovarian cancers, may be suitable for trials of a new drug called olaparib [AZD2281], which has fewer side-effects than normal cancer treatments. Olaparib belongs to a class of drugs known as “PARP” (Poly (ADP-ribose) polymerase) inhibitors.

Researchers say the study findings will improve the detection of faulty BRCA genes, as current criteria for genetic testing may miss as many as two-thirds of ovarian cancer patients carrying the mutated genes.  Improving the identification of BRCA mutations will help relatives of ovarian cancer patients, who may themselves be at increased risk of developing hereditary ovarian cancer.

Dr. Charlie Gourley, who led the research at the University of Edinburgh, said:

“We are beginning to understand the importance of tailoring cancer treatments according to the specifics of each patient’s tumor. These findings demonstrate that tumors which arise because of defects in the BRCA1 or BRCA2 genes behave differently to other ovarian cancers. This information should also help us to identify the patients carrying these genetic mutations, give them the most effective treatment for their cancer and offer their relatives genetic counselling.”

Sources:

UA Research Team Designing Holographic Imaging System For Ovarian Cancer

University of Arizona researchers Jennifer Barton and Ray Kostuk have received a five-year, $2.4 million grant from the National Institutes of Health to build the instrument that they hope will one day be used to monitor women at high risk for ovarian cancer.

Hologram of Human Ovary

Human ovary image captured with the use of the prototype holographic imaging system the team developed. (Photo: Univ. of Arizona News)

Hologram of An Orange

For comparison, an onion is imaged with the use of the prototype system the team developed. (Photo: Univ. of Arizona News)

Two University of Arizona [UA] researchers have formed a research team to design, build and evaluate two versions of an ovarian cancer medical imaging and screening instrument that will use holographic components in a new type of optical microscope.

Raymond Kostuk and Jennifer Barton have secured a five-year, $2.4 million grant from the National Institutes of Health to build the instrument that they hope will one day be used to monitor women at high risk for ovarian cancer. Kostuk is the Kenneth Von Behren Professor of Electrical and Computer Engineering and professor of optical sciences. Barton heads the UA department of biomedical engineering and is assistant director of the BIO5 Institute.

The system is unique in that it will for the first time project multiple spatial images from different depths within a tissue sample and simultaneously provide spectral information from optical markers in order to better identify cancerous cells.

This combined spectral spatial imaging technique shows potential to be much more effective in identifying cancerous tissue sites than by separately using spatial or spectral information.

The grant was issued following the successful two-year development of a prototype system the team built. It tests the validity of using holographic technology for subsurface imaging without having to perform surgery and take tissue samples.

According to the National Institutes of Health, there is, to date, no single effective screening test for ovarian cancer, so ovarian cancer is rarely diagnosed in its early stages. The result is that in more than 50 percent of women with ovarian cancer are diagnosed in the late stages of the disease when the cancer has already advanced.

  • About 76 percent percent of women with ovarian cancer survive one year after diagnosis.
  • About 45 percent live longer than 5 years after diagnosis.

Barton said ovarian cancer provides a compelling case to test holographic imaging and its efficacy in detecting cancers. At the present time the preferred treatment is surgery, which is also often needed to diagnose ovarian cancer. The procedure includes taking tissue samples, which may threaten the woman’s ability to have children in the future.

Jennifer Barton, UA

Jennifer Barton, Professor & Chair, Department of Biomedical Engineering; Assistant Director, BIO5 Institute. (Photo: Univ of Arizona News)

“Ovarian cancer has no symptoms until it is highly advanced making the five-year prognosis extremely poor. Those at high risk – with a family history of ovarian cancer or those who carry genetic mutations in the BRCA1 and BRCA2 genes, which normally help protect against both breast and ovarian cancer – may be counseled to have their ovaries removed through laparoscopic surgery,” Barton said. “Now imagine if you are an 18-year-old woman who has this history – ovaries are an important part of your overall health. They produce hormones you need over and above the notion that you would need your ovaries should you want to have children in the future.”

Thus, new technology capable of reliably diagnosing ovarian cancer in earlier stages could reduce the morbidity, high mortality and economic impact of this disease.

The system will work like a high-powered microscope that can be used to study tissue samples already removed. In addition, an endoscopic version is in the design stage to safely scan the ovaries for cancer during laparoscopic screenings in high-risk women, or as an adjunct to other laparoscopic procedures in all women.

The team will work with Dr. Kenneth D. Hatch, president of the Society of Pelvic Surgeons, and a professor of obstetrics and gynecology and director of female pelvic medicine and reconstructive surgery at the UA College of Medicine.

Through Hatch and a partnership with his patients who consent, Barton and Kostuk will be able to identify abnormal spatial and spectral markers of cancerous ovarian tissue.

Ray Kostuk

Ray Kostuk, Kenneth Von Behren Professor of Electrical and Computer Engineering & Professor of Optical Sciences, University of Arizona (Photo: Univ. of Arizona News)

The new imaging system will be tested on high-risk patients who are willing to participate and provide some future benefit to other patients who find themselves in a similar situation, Barton said.

Kostuk and Barton’s aim is to design the imaging system so that it is easy to use, requiring very little training, and also be cost effective.

“The system will image like an MRI or a CT scan but with much higher resolution than an ultrasonic image and will be a lot less expensive than an MRI. As an additional benefit no radiation will be used or exposed to sensitive ovary areas during the cancer screenings,” Kostuk said.

During the past 25 years Kostuk has researched different aspects of holography and holographic materials for use as optical elements.

The holographic imaging system being designed combines an optical technique that creates images capable of detecting subtle tissue microstructure changes. Together with fluorescence spectroscopy methods, the system has demonstrated capability for early cancer detection.

Another member of the team, UA research professor Marek Romanowski, with the UA department of biomedical engineering and the BIO5 Institute, is working on the development of targeted fluorescent dyes that will be used on tissue samples to identify or confirm suspected cancerous areas shown in the spatial image.

The multidisciplinary approach to the design of the hologram-based imaging system is a testament to the complexity of treating cancers.

“One of the advantages of being part of the UA is the ability to interact collaboratively with people in other disciplines,” Kotuk said. “Jennifer is a wonderful colleague who can identify important medical applications for new techniques and is able to bridge the gap between traditional engineering and medicine. Her skill and knowledge is critical to the success of the program,” he said.

“To solve the really interesting problems of today, no one person has all the expertise needed,” Barton added.

Sources:

Women Often Opt to Surgically Remove Their Breasts, Ovaries to Reduce Cancer Risk

Many women at high risk for breast or ovarian cancer are choosing to undergo surgery as a precautionary measure to decrease their cancer risk, according to a report in Cancer Epidemiology, Biomarkers & Prevention, a journal of the American Association for Cancer Research.

PHILADELPHIA – Many women at high risk for breast or ovarian cancer are choosing to undergo surgery as a precautionary measure to decrease their cancer risk, according to a report in Cancer Epidemiology, Biomarkers & Prevention, a journal of the American Association for Cancer Research.

Gareth

Dr. Gareth Evans is an international authority on cancer genetics. Dr. Evans is the Chairman of the National Institute For Health & Clinical Excellence (NICE) familial breast cancer group; Chairman, Cancer Genetics Group & Council Member, British Society of Human Genetics; Consultant, Genesis Prevention Center, Univ. Hospital of South Manchester NHS Trust; Professor, Univ. of Manchester, UK

“Women have their breasts or ovaries removed based on their risk.

Claudine_2009_July_(photo_credit_Phil_Humnicky,_Georgetown)

Dr. Claudine Isaacs is an Associate Professor of Medicine, Director of the Familial Cancer Registry Shared Resource, Director of the Clinical Breast Cancer Program, and the Co-Medical Director of the Fisher Center for Familial Cancer Research at the Lombardi Comprehensive Cancer Center, Georgetown Univ., Washington, D.C. (photo credit: Phil Humnicky, Georgetown Univ.)

It does not always happen immediately after counseling or a genetic test result and can take more than seven years for patients to decide to go forward with surgery,” said lead researcher D. Gareth Evans, M.D. Evans is a consultant in clinical genetics at the Genesis Prevention Center, University Hospital of South Manchester NHS Trust and a professor at the University of Manchester, United Kingdom.

Evans and colleagues assessed the increase in risk-reduction surgery among women with breast cancer and evaluated the impact of cancer risk, timing and age.

Rate of increase was measured among 211 women with known unaffected BRCA1 or BRCA2 mutation carriers. BRCA1 and BRCA2 are hereditary gene mutations that indicate an increased risk for developing breast cancer. Additionally, more than 3,500 women at greater than 25 percent lifetime risk of breast cancer without mutations also had a documented increase in risk-reduction surgery.

Women who had a biopsy after undergoing risk evaluation were twice as likely to choose a risk-reducing mastectomy. Forty percent of the women who were mutation carriers underwent bilateral risk-reducing mastectomy; 45 percent had bilateral risk-reducing salpingo-oophorectomy (surgical removal of ovaries). These surgeries are widely used by carriers of BRCA1 and BRCA2 gene mutations to reduce the risk for breast and ovarian cancer.

Evaluated by gene type, bilateral risk-reducing salpingo-oophorectomy was more common in women who were BRCA1 gene carriers – 52 percent had the surgery compared with 28 percent of the women who were BRCA2 gene carriers.

“We found that older women were much less likely to have a mastectomy, but were more likely to have their ovaries removed,” said Evans.

Most of the women, specifically those aged 35 to 45 years, opted for surgery within the first two years after the genetic mutation test, but some did not make a decision until seven years later.

“This is a very interesting study. It fleshes out some of what we know about adoption of risk reduction strategies in high-risk women who have participated in a very comprehensive and well thought-out genetic counseling, testing and management program,” said Claudine Isaacs, M.D., an associate professor of medicine and co-director of the Fisher Center for Familial Cancer Research, Lombardi Comprehensive Cancer Center at Georgetown University.

BRCA1 and BRCA2 mutation carriers have a very high lifetime risk of cancer, and for BRCA1 carriers there are unfortunately no clearly proven non-surgical prevention strategies, according to Isaacs. These women face a 50 to 85 percent lifetime risk of breast cancer, and mastectomy is currently the most effective prevention method available.

The findings confirm the expectations that when a woman has a biopsy, even if benign, most are more likely to opt for risk-reduction surgery.

“Screening should be conducted at a place with expertise in an effort to minimize false-positive results, which often lead to biopsy. This will minimize the anxiety that comes along with such a diagnosis. Patients should consult with an expert in advance and stay in contact with them to see how the science may be changing over time,” she advised. “This is an ongoing conversation that needs to be addressed and individualized for each patient.”

Likewise, Evans suggested that additional studies are needed to help evaluate the communication efforts and methods between doctors and/or counselors and women at risk for breast cancer. Questions to be raised should include how is the communication method occurring, are the doctors sympathetic and is there an ongoing dialogue?

“Careful risk counseling does appear to influence women’s decision for surgery although the effect is not immediate,” the researchers wrote.

References:

Beyond BRCA1 & BRCA2: U.K. Researchers Identify Genetic Defect That Could Increase Risk of Ovarian Cancer Up To 40%

Scientists have located a region of DNA which – when altered – can increase the risk of ovarian cancer according to research published in Nature Genetics today. An international research group led by scientists based at the Cancer Research UK Genetic Epidemiology Unit, at the University of Cambridge and UCL (University College London) searched through the genomes of 1,810 women with ovarian cancer and 2,535 women without the disease from across the UK. …The scientists estimate that there is a 40 per cent increase in lifetime risk for women carrying the DNA variation on both copies of chromosome nine compared with someone who doesn’t carry it on either chromosome. The risk for women carrying the variation on both chromosomes is 14 in 1000 – compared with [10] ten in 1000 [in the general population]. … The lifetime risk for a woman carrying the DNA variant on one copy of the chromosome is increased by 20 per cent from ten in 1000 to 12 in 1000. …

Genetic link to ovarian cancer found

Cancer Research UK

SUNDAY 2 AUGUST 2009

Cancer Research UK Press Release

Scientists have located a region of DNA which – when altered – can increase the risk of ovarian cancer according to research published in Nature Genetics today.

An international research group led by scientists based at the Cancer Research UK Genetic Epidemiology Unit, at the University of Cambridge and UCL (University College London) searched through the genomes of 1,810 women with ovarian cancer and 2,535 women without the disease from across the UK. They analysed 2.5 million variations in DNA base pairs – the letters which spell out the genetic code – to identify common spelling ‘errors’ linked to ovarian cancer risk.

The scientists identified the genetic ‘letters’- called single nucleotide polymorphisms (SNPs) – which when spelled slightly differently increase ovarian cancer risk in some women. This is the first time scientists have found a SNP linked uniquely to risk of ovarian cancer and is the result of eight years of investigations. With the help of the international Ovarian Cancer Association Consortium (OCAC), they then looked at more than 7,000 additional women with ovarian cancer and 10,000 women without disease from around the world to confirm this finding.

Vodpod videos no longer available.

The region of risk DNA is located on chromosome nine – there are 23 pairs of each chromosome in humans, one of each pair inherited from each parent. The scientists estimate that there is a 40 per cent increase in lifetime risk for women carrying the DNA variation on both copies of chromosome nine compared with someone who doesn’t carry it on either chromosome. The risk for women carrying the variation on both chromosomes is 14 in 1000 – compared with [10] ten in 1000 [in the general population].

Approximately 15 per cent of women in the UK population carry two copies of the variant DNA.

The lifetime risk for a woman carrying the DNA variant on one copy of the chromosome is increased by 20 per cent from ten in 1000 to 12 in 1000. Approximately 40 per cent of women in the UK carry one copy.

Senior author Dr. Simon Gayther, whose work is supported by Cancer Research UK and The Eve Appeal charity which fundraises for the gynaecological cancer research team based at UCL, said: “The human DNA blueprint contains more than 10 million genetic variants. These are part and parcel of our characteristics and make-up – but a handful will also increase the chances of some women getting ovarian cancer and we have found the first one of these.”

“There is now a genuine hope that as we find more, we can start to identify the women at greatest risk and this could help doctors to diagnose the disease earlier when treatment has a better chance of being successful.”

Dr. Andrew Berchuck, head of the international Ovarian Cancer Association Consortium steering committee, said: “This study confirms that ovarian cancer risk is partly determined by genetic variants present in a large number of women. This initial discovery and others that will likely follow in the future lay the groundwork for individualised early detection and prevention approaches to reduce deaths from ovarian cancer.”

Ovarian cancer is the fifth most common cancer in women in the UK with around 6,800 new cases diagnosed each year in the UK – 130 women every week. It is the fourth most common cause of cancer death in women in the UK with around 4,300 deaths from the disease in the UK each year.

BRCA1 and BRCA2 are high risk genes which cause breast cancer and are already known to significantly increase the risk of ovarian cancer- but faults in these genes are rare and probably cause less than five per cent of all cases of ovarian cancer.

Lead author, Professor Dr Paul Pharoah, a Cancer Research UK senior research fellow at the University of Cambridge, said: “We already know that people with mistakes in the BRCA1 and BRAC2 genes have a greater risk of ovarian cancer – but on their own they don’t account for all of the inherited risk of the disease. “It is likely that the remaining risk is due to a combination of several unidentified genes – which individually carry a low to moderate risk. Now we have ticked one off, the hunt is on to find the rest.”

Rose Lammy, the mother of David Lammy MP [Member of Parliament] for Tottenham and Minister for Higher Education and Intellectual Property, died of ovarian cancer in 2008. Rose Lammy’s DNA sample was included in the study, and she carried both risk alleles of the new genetic marker that researchers have identified.

David Lammy said: “I am pleased that Mum’s sample was included in this study as it is one step towards earlier diagnosis of ovarian cancer when treatment is more successful. We now know the fact that she had this altered DNA meant that her lifetime risk had risen from 10 in 1,000 to 14 in 1,000, an increase of 40 per cent compared to those women who don’t carry this DNA variation. Dr Lesley Walker, director of cancer information at Cancer Research UK, added: “This is an important discovery. Our researchers have worked as part of a huge collaboration to establish the regions of DNA that can increase someone’s risk of developing ovarian cancer. “This research paves the way for scientists to discover even more genes linked to ovarian cancer and could lead to new approaches to treat or prevent the disease – crucially it will help doctors manage women who are at increased risk.”

Source: Genetic link to ovarian cancer found, Cancer Research U.K. Press Release & Video, 02 Aug. 09.

Reference: Honglin Song et al. (2009). A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 Nature Genetics 10.1038/ng.424.

New Study Shows Four-Year Window for Early Detection of Ovarian Cancer

A new study by Howard Hughes Medical Institute researchers shows that most early stage ovarian tumors exist for years at a size that is a thousand times smaller than existing tests can detect reliably.  But the researchers say their findings also point to new opportunities for detecting ovarian cancer—a roughly four-year window during which most tumors are big enough to be seen with a microscope, but have not yet spread.

Tiny Early-Stage Ovarian Tumors Define Early Detection Challenge

Currently available tests detect ovarian cancer when it is about the size of the onion in the photograph. To reduce ovarian cancer mortality by 50 percent, an early detection test would need to be able to reliably detect tumors the size of the peppercorn. (Photo Source:  Patrick O. Brown, Howard Hughes Medical Institute Investigator, Research News Release, July 28, 2009)

Currently available tests detect ovarian cancer when it is about the size of the onion in the photograph. To reduce ovarian cancer mortality by 50 percent, an early detection test would need to be able to reliably detect tumors the size of the peppercorn. (Photo Source: Patrick O. Brown, Howard Hughes Medical Institute Investigator, Research News Release, July 28, 2009)

A new study by Howard Hughes Medical Institute researchers shows that most early stage ovarian tumors exist for years at a size that is a thousand times smaller than existing tests can detect reliably.

But the researchers say their findings also point to new opportunities for detecting ovarian cancer—a roughly four-year window during which most tumors are big enough to be seen with a microscope, but have not yet spread.

“Our work provides a picture of the early events in the life of an ovarian tumor, before the patient knows it’s there,” says Howard Hughes Medical Institute researcher Patrick O. Brown. “It shows that there is a long window of opportunity for potentially life-saving early detection of this disease, but that the tumor spreads while it is still much too small to be detected by any of the tests that have been developed or proposed to date.”

According to the American Cancer Society, some 15,000 women in the United States and 140,000 women worldwide die from ovarian cancer each year. The vast majority of these deaths are from cancers of the serous type, which are usually discovered only after the cancer has spread.

“Instead of typically detecting these cancers at a very advanced stage, detecting them at an early stage would be enormous in terms of saving lives,” says Brown, who is at Stanford University School of Medicine. Early detection would enable surgeons to remove a tumor before it spreads, he adds.

The article—co-authored by Chana Palmer of the Canary Foundation, a nonprofit organization focused on early cancer detection—was published July 28, 2009, in the open access journal PLoS Medicine.

“Like almost everything with cancer … the more closely you look at the problem, the harder it looks,” Brown says. “That’s not to say that I don’t believe it’s a solvable problem. It’s just a difficult one.” — Patrick O. Brown, M.D. Ph.D.

Patrick O. Brown, M.D. Ph.D., Howard Hughes Medical Institute Investigator, Stanford University School of Medicine

Patrick O. Brown, M.D. Ph.D., Howard Hughes Medical Institute Investigator, Stanford Univ. School of Medicine

“Like almost everything with cancer … the more closely you look at the problem, the harder it looks,” Brown says. “That’s not to say that I don’t believe it’s a solvable problem. It’s just a difficult one.”

In the quest to develop early detection methods for ovarian cancer, Brown says, science hasn’t had a firm grasp on its target. So he and Palmer took advantage of published data on ovarian tumors to generate a better understanding of how the cancer progresses in its earliest stages.

The team analyzed data on serous-type ovarian tumors that were discovered when apparently healthy women at high genetic [BRCA1 gene mutation] risk for ovarian cancer had their ovaries and fallopian tubes removed prophylactically. Most of the tumors were microscopic in size; they were not detected when the excised tissue was examined with the naked eye.

The analysis uncovered a wealth of unexplored information. Thirty-seven of the early tumors had been precisely measured when they were excised – providing new details about the size of the tumors when they were developing prior to intervention, Brown says. By extrapolating from this “occult” size distribution to the size distribution of larger, clinically evident tumors, the researchers were able to develop a model of how the tumors grew and progressed. “We are essentially trying to build a story for how these tumors progress that fits the data,” Brown explains.

Among the study’s findings:

  • Serous ovarian tumors exist for at least four years before they spread.
  • The typical serous cancer is less than three millimeters across for 90 percent of this “window of opportunity for early detection.”
  • These early tumors are twice as likely to be in the fallopian tubes as in the ovaries.
  • To cut mortality from this cancer in half, an annual early-detection test would need to detect tumors five millimeters in diameter or less – about the size of a black peppercorn and less than a thousandth the size at which these cancers are typically detected today.

Brown’s lab is now looking for ways to take advantage of that window of opportunity to detect the microscopic tumors and intervene before the cancer spreads.

One strategy the laboratory is pursuing is to examine tissues near the ovaries, in the female reproductive tract, for protein or other molecular markers that could signify the presence of cancer. Brown says answering another question might also prove helpful: whether there is any reliable flow of material from the ovaries and fallopian tubes through the uterus and cervix into the vagina—material that might be tested for a specific cancer marker.

Despite science’s broad understanding of cancer at a molecular level, it has been challenging to identify simple molecular markers that signal the presence of early disease. One current blood marker, CA-125, has proven useful in monitoring later-stage ovarian cancer, but it has not been helpful for early detection. So Brown’s lab is also looking for biomarkers that are present only in ovarian tumors and not in healthy cells, instead of relying on tests that look for unusually high levels of a molecule that is part of normal biology (like CA-125).

The researchers are doing extensive sequencing of all messenger RNA molecules (which carry information for the production of specific proteins) in ovarian cancer cells, searching for evidence of proteins in these cells that would never be found in non-cancer cells. These variant molecules could be produced as a result of chromosome rearrangements—when the genome is cut and spliced in unusual ways—in ovarian cancers. “It’s a long shot,” says Brown, “but it’s important enough to try.”

Source: Tiny Early-Stage Ovarian Tumors Define Early Detection Challenge, Research News, Howard Hughes Medical Institute, July 29, 2009 [summarizing Brown PO, Palmer C, 2009 The Preclinical Natural History of Serous Ovarian Cancer: Defining the Target for Early Detection. PLoS Med 6(7): e1000114. doi:10.1371/journal.pmed.1000114].

Vox Populi*: Libby, We’ll Be Missing You

Vox Populi:  Libby, We’ll Be Missing You.

voxpopDear Libby,

One year ago today, you left us after an extended battle with ovarian cancer.  You are missed as a wife, a daughter, a sister, an aunt and a cousin.  You were, and continue to be, a very special family member to your loved ones who remain behind.  You battled this insidious disease with courage but lost that battle in the prime of your life at age 26.

I wonder why your life was cut short by this disease.

I wonder why an effective screening test has not been discovered by a country that set a lofty goal of landing a man on the moon and accomplished that goal within a decade.

I wonder why there are so many pink ribbons yet so few teal ribbons.

I wonder how the mothers of a major Hollywood celebrity (Angelina Jolie) and the President of the U.S. (Barack Obama) could die from ovarian cancer, yet U.S. women remain generally unaware of the early warning signs and symptoms of the disease.

I have faith that you are in a much better place now.  A place that only knows pure love.  A place that knows no pain or suffering. A place where there are logical answers to my questions above.

I remember when you rode in my new red convertible sports car at the age of 11 with your blond hair blowing behind you in the wind.  At that moment, your life seemed limitless.

I remember when, as a young adult, you helped others who could not help themselves.  You chose generosity and kindness while many of your peers sought money and power.

I remember your positive attitude after initial diagnosis, despite the fact that you had every reason to blame life and others for your plight.

I remember your dry sense of humor after a doctor attempted to soften the blow of a disease recurrence diagnosis by telling you that even he could step out into the street tomorrow and get hit by a bus.  You suggested that the doctor needed serious help with his “people skills,” but joked that his insensitive statement should appear on an ovarian cancer fundraising T-shirt.

I remember how you continued to seek out medical solutions to your disease in the face of dire odds and statistics.

I remember “hearing” your smile on the telephone, regardless of our 3,000 mile separation.

I will always remember your example of love, faith, hope, courage, persistence, and ultimately, acceptance.

On July 28, 2008, I wrote about two songs that immediately came to mind after I heard about your passing.  One year later, two songs again come to mind based upon your inspiration and memory.

The first song is I’ll Be Missing You.

I’ll Be Missing You was written by Terry “Sauce Money” Carroll and performed by Sean “Diddy” Combs (then Puff Daddy), Faith Evans and 112.  Terry Carroll received a 1997 Grammy Award for the song that is based in part upon the melody of the 1983 Grammy Award-Winning song Every Breath You Take (written by Sting and performed by The Police).  I’ll Be Missing You was inspired by the memory of Combs’ fellow Bad Boy Records artist Christopher Wallace (aka Notorious B.I.G. ) who died in March 1997.  The song lyrics express what our family is feeling today when we think of you:

… Life ain’t always what it seem to be
Words can’t express what you mean to me
Even though you’re gone, we still a team
Through your family, I’ll fulfill your dream

In the future, can’t wait to see
If you open up the gates for me
Reminisce sometime
The night they took my friend
Try to black it out but it plays again
When it’s real feelings’ hard to conceal
Can’t imagine all the pain I feel
Give anything to hear half your breath
I know you still livin’ your life after death

… It’s kinda hard with you not around
Know you in heaven smilin down
Watchin us while we pray for you
Every day we pray for you
Til the day we meet again
In my heart is where I’ll keep you friend
Memories give me the strength I need to proceed
Strength I need to believe …
I still can’t believe you’re gone
Give anything to hear half your breath
I know you still living you’re life, after death …

The second song is Eva Cassidy’s cover of Over The Rainbow, which is the Academy Award-Winning song written by Harold Arlen and E.Y. Harburg, and originally sung by Judy Garland, in the 1939 Academy Award-Nominated “Best Picture” film Wizard of Oz.

Eva Cassidy, like you, died in the prime of her life from cancer.  Eva was 33 years old when she died in 1996 from melanoma, the deadliest form of skin cancer.  During her life, she created and sung beautiful music in relative obscurity. After her death, millions of worldwide fans “discovered” her music and today celebrate her life.  The lyrics of this classic ballad celebrate our belief that you are now at peace in a beautiful place “somewhere over the rainbow,” along with the hope that we will one day be reunited with you:

Somewhere over the rainbow
Way up high
There’s a land that I heard of
Once in a lullaby

Some day I’ll wish upon a star
And wake up where the clouds are far behind me
Where troubles melt like lemondrops
Away above the chimney tops
That’s where you’ll find me

Somewhere over the rainbow
Bluebirds fly
Birds fly over the rainbow
Why then, oh why can’t I?

In Mitch Albom’s bestselling memoir Tuesdays With Morrie, Morrie Schwartz, who was suffering from terminal Lou Gehrig’s Disease, taught Albom (his former college student) an important lesson about how death reminds us to live fully each day with love. “As long as we can love each other, and remember the feeling of love we had, we can die without ever really going away,” he told Albom one Tuesday. “All the love you created is still there. All the memories are still there. You live on in the hearts of everyone you have touched and nurtured while you were here. Death ends a life, not a relationship.”

Libby, your memory, love, and inspiration live on in our hearts and minds.  Your physical life ended one year ago, but your relationship with us is eternal.  We will forever love you.

Libby Remick (1982 - 2008) Grieve not, nor speak of me with tears, but laugh and talk of me as if I were beside you there. -- Isla Paschal Richardson

Libby Remick (1982 - 2008) "Grieve not, nor speak of me with tears, but laugh and talk of me as if I were beside you there." -- Isla Paschal Richardson

I am requesting family members and readers to honor Libby by contributing at least $1.00 to ovarian cancer research via the Ovarian Cancer Research Fund (and PayPal).  To make a contribution, click on Kelly Ripa’s picture located on the left homepage sidebar, or simply CLICK HERE.

__________________________

  • Ovarian cancer causes more deaths than any other cancer of the female reproductive system.
  • In 2009, the American Cancer Society (ACS) estimates that there will be approximately 21,550 new ovarian cancer cases diagnosed in the U.S.  ACS estimates that 14,600 U.S. women will die from the disease, or about 40 women per day.
  • Ovarian cancer is not a “silent” disease; it is a “subtle” disease. Recent studies indicate that some women may experience persistent, nonspecific symptoms, such as (i) bloating, (ii) pelvic or abdominal pain, (iii) difficulty eating or feeling full quickly, or (iv) urinary urgency or frequency. Women who experience such symptoms daily for more than a few weeks should seek prompt medical evaluation. To learn more about the warning signs and symptoms of ovarian cancer, CLICK HERE.
  • Ovarian cancer can afflict adolescent, young adult, and mature women, although the risk of disease increases with age and peaks in the late 70s. Pregnancy and the long-term use of oral contraceptives reduce the risk of developing ovarian cancer.
  • There is no reliable screening test for the detection of early stage ovarian cancer. Pelvic examination only occasionally detects ovarian cancer, generally when the disease is advanced. A Pap smear cannot detect ovarian cancer. However, the combination of a thorough pelvic exam, transvaginal ultrasound, and a blood test for the tumor marker CA125 may be offered to women who are at high risk of ovarian cancer and to women who have persistent, unexplained symptoms like those listed above.
  • If diagnosed at the localized stage, the 5-year ovarian cancer survival rate is 92%; however, only about 19% of all cases are detected at this stage, usually fortuitously during another medical procedure.
  • For women with regional and distant metastatic disease, the 5-year ovarian cancer survival rates are 71% and 30%, respectively. The 10-year relative survival rate for all stages combined is 38%.

__________________________

*”Vox Populi,” a Latin phrase that means “voice of the people,” is a term often used in broadcast journalism to describe an interview of a “man on the street.”

In the spirit of Vox Populi, Libby’s H*O*P*E*™ searches online for original pieces of writing created by ovarian cancer survivors, survivors’ family members, cancer advocates, journalists, and health care professionals, which address one or more aspects of ovarian cancer within the context of daily life. The written pieces that we discover run the gamut; sometimes poignant, sometimes educational, sometimes touching, sometimes comedic, but always honest. The written piece may be an essay, editorial, poem, letter, or story about a loved one. In all cases, we have received permission from the writer to publish his or her written piece as a Libby’s H*O*P*E*™ Vox Populi weblog post.

It is our hope that the monthly Vox Populi feature will allow readers to obtain, in some small way, a better understanding of how ovarian cancer impacts the life of a woman diagnosed with the disease and her family. We invite all readers to submit, or bring to our attention, original written pieces suitable for publication as monthly Vox Populi features.


Symptoms Of Ovarian Cancer Remain Relatively Stabile Over Time As Reported By High Risk Women

Researchers from the Fred Hutchinson Cancer Research Center reported recently that symptoms of ovarian cancer tend to be relatively stable over time for women who are at increased risk of ovarian cancer based upon family history of cancer or BRCA 1/2 gene mutation.

Continue reading

ACLU Challenges Patents On Genes Responsible For Hereditary Breast and Ovarian Cancers

“The American Civil Liberties Union and the Public Patent Foundation at Benjamin N. Cardozo School of Law (PUBPAT) filed a lawsuit … charging that patents on two human genes associated with breast and ovarian cancer stifle research that could lead to cures and limit women’s options regarding their medical care. Mutations along the genes, known as BRCA1 and BRCA2, are responsible for most cases of hereditary breast and ovarian cancers. The lawsuit argues that the patents on these genes are unconstitutional and invalid. …”

Continue reading

UPCI Launches Clinical Trial for Patients with Hereditary Breast and Ovarian Cancers

“The University of Pittsburgh Cancer Institute (UPCI) will be the primary site for a clinical trial of ABT-888, a drug previously proven in combination treatments to improve chemotherapy’s effectiveness by lowering cancer cells’ resistance to treatment. This trial will, for the first time, examine ABT-888 as a single agent for patients with cancers related to BRCA 1 or 2 genetic mutations, which predispose patients to breast and ovarian cancers. …”

Continue reading

Women of Diverse Ethnic Ancestry Have Similar Risk of Carrying BRCA Mutations as Those With Western European Ancestry

” …The study, performed by researchers at Philadelphia’s Fox Chase Cancer Center and Myriad Genetics, Inc., analyzed the prevalence of BRCA1/BRCA2 gene mutations in patients of different ethnicities at risk for hereditary breast and ovarian cancer. The study included test results of 46,276 women during the ten-year period from 1996 to 2006. Study subjects encompassed a broad, diverse ethnic group, including individuals of European, Latin American, African, Asian and Native American ancestries. … Results of the study showed that BRCA disease-causing mutations were identified in 5,780 women tested (12.5%) across all ethnic populations. Importantly, the study demonstrated that individuals of African and Latin American ancestry had as great a risk in having BRCA mutations as women with western European ancestry, when controlled for the level of personal and family history of breast and ovarian cancer. …”

“New Study Published in CANCER Supports Use of BRACAnalysis Testing Across Broad Ethnic Populations

Women of Asian, African and Latin American Ancestry Had Similar Risk of Carrying BRCA Mutations as Those With Western European Ancestry

SALT LAKE CITY, UT, Apr 30, 2009 (MARKET WIRE via COMTEX News Network) — Myriad Genetics, Inc. (NASDAQ: MYGN) announced today that an article entitled ‘BRCA1 and BRCA2 Mutations in Women of Different Ethnicities Undergoing Testing for Hereditary Breast-Ovarian Cancer‘ will appear in the May 15, 2009 issue of the journal CANCER.  The study demonstrates that BRACAnalysis(R) testing of at-risk women across diverse ethnicities helps identify individuals who may benefit from improved surveillance, medical and surgical strategies to reduce their hereditary cancer risks.

critchfield

Gregory C. Critchfield, M.D., M.S., President, Myriad Genetic Laboratories

‘This study, the largest of its kind, shows convincingly that strong family or personal history of breast or ovarian cancer is associated with a high prevalence of BRCA mutations — irrespective of one’s ethnic heritage,’ stated Gregory C. Critchfield, M.D., M.S., President of Myriad Genetic Laboratories.

The association between ethnicity and the risk of BRCA1 or BRCA2 mutations has not been well understood in women of non-European ancestry. This study provides important information for women of Asian, African, Latin American and Native American ancestry that may impact breast cancer [and ovarian cancer] prevention and treatment efforts among women in these populations. The study, performed by researchers at Philadelphia’s Fox Chase Cancer Center and Myriad Genetics, Inc., analyzed the prevalence of BRCA1/BRCA2 gene mutations in patients of different ethnicities at risk for hereditary breast and ovarian cancer. The study included test results of 46,276 women during the ten-year period from 1996 to 2006. Study subjects encompassed a broad, diverse ethnic group, including individuals of European, Latin American, African, Asian and Native American ancestries. To date, this work represents the largest group of patients tested for BRCA mutations reported in the literature. All testing was performed at Myriad Genetics, Inc.

Results of the study showed that BRCA disease-causing mutations were identified in 5,780 women tested (12.5%) across all ethnic populations. Importantly, the study demonstrated that individuals of African and Latin American ancestry had as great a risk in having BRCA mutations as women with western European ancestry, when controlled for the level of personal and family history of breast and ovarian cancer.

Professional medical society guidelines, such as the American Society of Clinical Oncologists (ASCO), the Society of Gynecologic Oncologists (SGO), and the American College of Obstetricians and Gynecologists (ACOG), articulate risk factors for BRCA gene mutations, which include, among others, breast cancer occurring before age 50, personal or family history of ovarian cancer at any age, personal or family history of male breast cancer, Ashkenazi Jewish ancestry with breast cancer at any age, or the presence of a known BRCA mutation in the family.

About BRACAnalysis(R)

BRACAnalysis(R) is a comprehensive analysis of the BRCA1 and BRCA2 genes for assessing a woman’s risk for breast and ovarian cancer. A woman who tests positive with the BRACAnalysis(R) test has, on average, an 82% lifetime risk of developing breast cancer during her lifetime and a 44% risk of developing ovarian cancer. BRACAnalysis(R) provides important information that the Company believes will help the patient and her physician make better informed lifestyle, surveillance, preventive medication and treatment decisions. As published in the Journal of the National Cancer Institute, researchers have shown that pre-symptomatic individuals who have a high risk of developing breast cancer can reduce their risk by approximately 50% with appropriate preventive therapies. Additionally, as published in the New England Journal of Medicine, researchers have shown that pre-symptomatic individuals who carry gene mutations can lower their risk of developing ovarian cancer by approximately 60% with appropriate preventive therapies.

For more information about BRACAnalysis(R), please call 1-800-4-MYRIAD, or visit www.myriadtests.com.

About Myriad Genetics

Myriad Genetics, Inc. is a leading healthcare company focused on the development and marketing of novel molecular diagnostic and therapeutic products. Myriad’s news and other information are available on the Company’s Web site at www.myriad.com.

Myriad, the Myriad logo, BRACAnalysis, Colaris, Colaris AP, Melaris, TheraGuide, Prezeon, OnDose, Azixa and Vivecon are trademarks or registered trademarks of Myriad Genetics, Inc. in the United States and foreign countries. MYGN-G”

Sources

Related InformationCLICK HERE to review all Libby’s H*O*P*E*™ postings relating to BRCA gene mutations.

President of M.D. Anderson Outlines 10 Steps To Achieve Progress Against Cancer.

“The Houston Chronicle recently published a commentary by John Mendelsohn, M.D., president of M. D. Anderson, outlining actions the nation should take to achieve great progress against cancer. … Here are 10 steps we can take to ensure that deaths decrease more rapidly, the ranks of survivors swell, and an even greater number of cancers are prevented in the first place. …”

“Ten Pieces Help Solve Cancer Puzzle

John Mendelsohn, M.D., President, The University of Texas M.D. Anderson Cancer Center

John Mendelsohn, M.D., President, The University of Texas M.D. Anderson Cancer Center

The Houston Chronicle recently published a commentary by John Mendelsohn, M.D., president of M. D. Anderson, outlining actions the nation should take to achieve great progress against cancer.

An American diagnosed with cancer today is very likely to join the growing ranks of survivors, who are estimated to total 12 million and will reach 18 million by 2020. The five-year survival rate for all forms of cancer combined has risen to 66%, more than double what it was 50 years ago.

Along with the improving five-year survival rates, the cancer death rate has been falling by 1% to 2% annually since 1990.

According to the World Health Organization, cancer will be the leading worldwide cause of death in 2010. Over 40% of Americans will develop cancer during their lifetime.

While survival rates improve and death rates fall, cancer still accounts for one in every five deaths in the U.S., and cost this nation $89.0 billion in direct medical costs and another $18.2 billion in lost productivity during the illness in 2007, according to the National Institutes of Health.

Here are 10 steps we can take to ensure that deaths decrease more rapidly, the ranks of survivors swell, and an even greater number of cancers are prevented in the first place.

#1.  Therapeutic cancer research should focus on human genetics and the regulation of gene expression.

Cancer is a disease of cells that have either inherited or acquired abnormalities in the activities of critical genes and the proteins for which they code. Most cancers involve several abnormally functioning genes – not just one – which makes understanding and treating cancer terribly complex. The good news is that screening for genes and their products can be done with new techniques that accomplish in days what once took years.

Knowledge of the human genome and mechanisms regulating gene expression, advances in technology, experience from clinical trials, and a greater understanding of the impact of environmental factors have led to exciting new research approaches to cancer treatment, all of which are being pursued at M. D. Anderson:

  • Targeted therapies.  These therapies are designed to counteract the growth and survival of cancer cells by modifying, replacing or correcting abnormally functioning genes or their RNA and protein products, and by attacking abnormal biochemical pathways within these cells.
  • Molecular markers.  Identifying the presence of particular abnormal genes and proteins in a patient’s cancer cells, or in the blood, will enable physicians to select the treatments most likely to be effective for that individual patient.
  • Molecular imaging.  New diagnostic imaging technologies that detect genetic and molecular abnormalities in cancers in individual patients can help select optimal therapy and determine the effectiveness of treatment within hours.
  • Angiogenesis.  Anti-angiogenesis agents and inhibitors of other normal tissues that surround cancers can starve the cancer cells of their blood supply and deprive them of essential growth-promoting factors which must come from the tumor’s environment.
  • Immunotherapy. Discovering ways to elicit or boost immune responses in cancer patients may target destruction of cancer cells and lead to the development of cancer vaccines.

#2.  Better tests to predict cancer risk and enable earlier detection must be developed.

New predictive tests, based on abnormalities in blood, other body fluids or tissue samples, will be able to detect abnormalities in the structure or expression of cancer-related genes and proteins. Such tests may predict the risk of cancer in individuals and could detect early cancer years before any symptoms are present.

The prostate-specific antigen test for prostate cancer currently is the best known marker test to detect the possible presence of early cancer before it has spread. Abnormalities in the BRCA 1 and BRCA 2 genes predict a high risk for breast cancer, which can guide the decisions of physicians and patients on preventive measures. Many more gene-based predictors are needed to further our progress in risk assessment and early detection.

#3.  More cancers can and must be prevented.

In an ideal world, cancer “care” would begin with risk assessment and counseling of a person when no malignant disease is present. Risk factors include both inherited or acquired genetic abnormalities and those related to lifestyle and the environment.

The largest risk factor for cancer is tobacco smoking, which accounts for nearly one-third of all cancer deaths. Tobacco use should be discouraged with cost disincentives, and medical management of discontinuing tobacco use must be reimbursed by government and private sector payors.

Cancer risk assessment should be followed by appropriate interventions (either behavioral or medical) at a pre-malignant stage, before a cancer develops. Diagnosis and treatment of a confirmed cancer would occur only when these preventive measures fail.

A full understanding of cancer requires research to identify more completely the genetic, environmental, lifestyle and social factors that contribute to the varying types and rates of cancer in different groups in this country and around the world. A common cancer in Japan or India, for example, often is not a common cancer in the U.S. When prostate cancer occurs in African-Americans it is more severe than in Caucasians. A better understanding of the factors that influence differences in cancer incidence and deaths will provide important clues to preventing cancer in diverse populations worldwide.

#4.  The needs of cancer survivors must become a priority.

Surviving cancer means many things: reducing pain, disability and stress related to the cancer or the side effects of therapy; helping patients and their loved ones lead a full life from diagnosis forward; preventing a second primary cancer or recurrence of the original cancer; treating a difficult cancer optimally to ensure achieving the most healthy years possible, and more.  Since many more patients are surviving their cancers – or living much longer with cancer – helping them manage all the consequences of their disease and its treatment is critically important.  It is an area ripe for innovative research and for improvement in delivery of care.

#5.  We must train future researchers and providers of cancer care.

Shortages are predicted in the supply of physicians, nurses and technically trained support staff needed to provide expert care for patients with cancer.  On top of this, patient numbers are projected to increase.  We are heading toward a “perfect storm” unless we ramp up our training programs for cancer professionals at all levels.   The pipeline for academic researchers in cancer also is threatened due to the increasing difficulty in obtaining peer-reviewed research funding. We must designate more funding from the NIH and other sources specifically for promising young investigators, to enable them to initiate their careers.

#6.  Federal funding for research should be increased.

After growing by nearly 100% from 1998-2002, the National Cancer Institute budget has been in decline for the past four years. Through budget cuts and the effects of inflation, the NCI budget has lost approximately 12% of its purchasing power.  Important programs in tobacco control, cancer survivorship and support for interdisciplinary research have had significant cuts.  The average age at which a biomedical researcher receives his or her first R01 grant (the gold standard) now stands at 42, hardly an inducement to pursue this field. This shrinks the pipeline of talented young Americans who are interested in careers in science, but can find easier paths to more promising careers elsewhere.  Lack of adequate funding also discourages seasoned scientists with outstanding track records of contributions from undertaking innovative, but risky research projects.  The U.S. leadership in biomedical research could be lost.

Biomedical research in academic institutions needs steady funding that at least keeps up with inflation and enables continued growth.

#7.  The pace of clinical research must accelerate.

As research ideas move from the laboratory to patients, they must be assessed in clinical trials to test their safety and efficacy. Clinical trials are complicated, lengthy and expensive, and they often require large numbers of patients.  Further steps must be taken to ensure that efficient and cost-effective clinical trials are designed to measure, in addition to outcomes, the effects of new agents on the intended molecular targets. Innovative therapies should move forward more rapidly from the laboratory into clinical trials.

The public needs to be better educated about clinical trials, which in many cases may provide them with access to the best care available.  Greater participation in trials will speed up drug development, in addition to providing patients with the best options if standard treatments fail.  The potential risks and benefits of clinical trials must continue to be fully disclosed to the patients involved, and the trials must continue to be carefully monitored.

The issue of how to pay for clinical trials must be addressed. The non-experimental portion of the costs of care in clinical trials currently are borne in part by Medicare, and should be covered fully by all payors. The experimental portion of costs of care should be covered by the owner of the new drug, who stands to benefit from a new indication for therapeutic use.

#8.  New partnerships will encourage drug and device development.

One way to shorten the time for drug and device development is to encourage and reward collaboration among research institutions, and collaboration between academia and industry.  Increasingly, partnerships are required to bring together sufficient expertise and resources needed to confront the complex challenges of treating cancer. There is enormous opportunity here, but many challenges, as well.

Academic institutions already do collaborate, but we need new ways to stimulate increased participation in cooperative enterprises.

Traditionally, academic institutions have worked with biotech and pharmaceutical companies by conducting sponsored research and participating in clinical trials.  By forming more collaborative alliances during the preclinical and translational phases prior to entering the clinic, industry and academia can build on each other’s strengths to safely speed drug development to the bedside. The challenge is that this must be done with agreements that involve sharing, but also protect the property rights and independence of both parties.

The results of all clinical trials must be reported completely and accurately, without any influence from conflicts of interest and with full disclosure of potential conflicts of interest.

#9. We must provide access to cancer care for everyone who lives in the U.S.

More than 47 million Americans are uninsured, and many others are underinsured for major illnesses like cancer. Others are uninsurable because of a prior illness such as cancer.  And many are indigent, so that payment for care is totally impossible.

Depending on where they live and what they can afford, Americans have unequal access to quality cancer care. Treatment options vary significantly nationwide. We must find better ways to disseminate the best standards of high-quality care from leading medical centers to widespread community practice throughout the country.

Cancer incidence and deaths vary tremendously among ethnic and economic groups in this country. We need to address the causes of disparities in health outcomes and move to eliminate them.

We are unique among Western countries in not providing direct access to medical care for all who live here. There is consensus today among most Americans and both political parties that this is unacceptable.  Especially for catastrophic illnesses like cancer, we must create an insurance system that guarantees access to care.

A number of proposals involving income tax rebates, vouchers, insurance mandates and expanded government insurance programs address this issue. Whatever system is selected should ensure access and include mechanisms for caring for underserved Americans.  The solution will require give-and-take among major stakeholders, many of which benefit from the status quo.  However, the social and economic costs have risen to the point that we have no choice.

#10.  Greater attention must be paid to enhancing the quality of cancer care and reducing costs.

New therapies and medical instruments are expensive to develop and are a major contributor to the rising cost of medical care in the U.S.  The current payment system rewards procedures, tests and treatments rather than outcomes.  At the same time, cancer prevention measures and services are not widely covered.  A new system of payment must be designed to reward outcomes, as well as the use of prevention services.

Quality of care can be improved and costs can be reduced by increasing our efforts to reduce medical errors and to prescribe diagnostic tests and treatments only on the basis of objective evidence of efficacy.

A standardized electronic medical record, accessible nationwide, is essential to ensuring quality care for patients who see multiple providers at multiple sites, and we are far behind many other nations.  Beyond that, a national electronic medical record could provide enormous opportunities for reducing overhead costs, identifying factors contributing to many illnesses (including cancer), determining optimal treatment and detecting uncommon side effects of treatment.

What the future holds in store.

I am optimistic. I see a future in which more cancers are prevented, more are cured and, when not curable, more are managed as effectively as other chronic, life-long diseases. I see a future in which deaths due to cancer continue to decrease.

Achieving that vision will require greater collaboration among academic institutions, government, industry and the public.  Barriers to quality care must be removed.  Tobacco use must be eradicated.  Research must have increased funding.  Mindful that our priority focus is on the patient, we must continue to speed the pace of bringing scientific breakthroughs from the laboratory to the bedside.

M. D. Anderson resources:

John Mendelsohn, M.D.”

Primary SourceTen Pieces Help Solve Cancer Puzzle, by John Mendelsohn, M.D., Feature Article, The University of Texas M.D. Anderson Cancer Center Cancer News, Mar. 2009.

Routine Screening for Hereditary Breast and Ovarian Cancer Recommended By ACOG & SGO

Evaluating a patient’s risk of hereditary breast and ovarian cancer syndrome is an important first step in cancer prevention and early detection and should be a routine part of ob-gyn practice. Those who are likely to have the syndrome should be referred for further assessment to a clinician with expertise in genetics, according to a new Practice Bulletin jointly released today by The American College of Obstetricians and Gynecologists [ACOG] and the Society of Gynecologic Oncologists [SGO]. The new document also provides information on how to counsel patients with hereditary risk in cancer prevention and how to perform surgical removal of the ovaries and fallopian tubes in this population

“Routine Screening for Hereditary Breast and Ovarian Cancer Recommended

Washington, DC — Evaluating a patient’s risk of hereditary breast and ovarian cancer syndrome is an important first step in cancer prevention and early detection and should be a routine part of ob-gyn practice. Those who are likely to have the syndrome should be referred for further assessment to a clinician with expertise in genetics, according to a new Practice Bulletin jointly released today by The American College of Obstetricians and Gynecologists [ACOG] and the Society of Gynecologic Oncologists [SGO]. The new document also provides information on how to counsel patients with hereditary risk in cancer prevention and how to perform surgical removal of the ovaries and fallopian tubes in this population.

Hereditary breast and ovarian cancer syndrome is an inherited cancer-susceptibility syndrome marked by multiple family members with breast cancer, ovarian cancer or both; the presence of both breast and ovarian cancer in a single individual; and early age of breast cancer onset.

lu-karen-pic

Karen Lu, M.D., Professor of Gynecologic Oncology at the University of Texas MD Anderson Cancer Center

‘The vast majority of families who have hereditary breast and ovarian cancer syndrome carry an inherited mutation of the BRCA1 or BRCA2 tumor suppressor genes. Women in these families may have a higher risk of breast, ovarian, peritoneal, and fallopian tube cancers,’ said Karen Lu, MD, professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center, who helped develop the ACOG Practice Bulletin. ‘Though having a BRCA gene mutation does not mean an individual will undoubtedly develop cancer, it is better to know sooner rather than later who may be at risk.’

Women with either BRCA mutation have a 65%-74% chance of developing breast cancer in their lifetime. Ovarian cancer risk is increased by 39%-46% in women with a BRCA1 mutation and by 12-20% in women with a BRCA2 mutation. Approximately 1 in 300 to 1 in 800 individuals in the US are BRCA carriers. BRCA mutations may occur more frequently in some populations founded by small ancestral groups, such as Ashkenazi (Eastern European) Jews, French Canadians, and Icelanders. An estimated 1 in 40 Ashkenazi Jews has a BRCA1 or BRCA2 mutation.

The new document addresses the ob-gyn’s role in identifying, managing, and counseling patients with an inherited cancer risk. The initial screening evaluation should include specific questions about personal and family history of breast cancer and ovarian cancer. Because BRCA mutations can be passed down from both the father’s and mother’s side of the family, both sides of a woman’s family should be carefully examined. Obtaining a full family history may be impeded in women who were adopted, those from families that have multiple women who had a hysterectomy and oophorectomy at a young age, or those from families with few female relatives. The results of a general evaluation will help determine whether the patient would benefit from a more in-depth hereditary cancer risk assessment, which should be conducted by a health care provider with expertise in cancer genetics.

Further genetic risk assessment is recommended for women who have more than a 20%-25% chance of having an inherited predisposition to breast or ovarian cancer. These women include:

  • Women with a personal history of both breast cancer and ovarian cancer
  • Women with ovarian cancer and a close relative—defined as mother, sister, daughter, grandmother, granddaughter, aunt—with ovarian cancer, premenopausal breast cancer, or both
  • Women of Ashkenazi Jewish decent with breast cancer who were diagnosed at age 40 or younger or who have ovarian cancer
  • Women with breast cancer at 50 or younger and who have a close relative with ovarian cancer or male breast cancer at any age
  • Women with a close relative with a known BRCA mutation

Genetic risk assessment may also be appropriate for women with a 5%-10% chance of having hereditary risk, including:

  • Women with breast cancer by age 40
  • Women with ovarian cancer, primary peritoneal cancer, or fallopian tube cancer or high grade, serous histology at any age
  • Women with cancer in both breasts (particularly if the first cancer was diagnosed by age 50)
  • Women with breast cancer by age 50 and a close relative with breast cancer by age 50
  • Women with breast cancer at any age and two or more close relatives with breast cancer at any age (particularly if at least one case of breast cancer was diagnosed by age 50)
  • Unaffected women with a close relative that meets one of the previous criteria

Before testing, a genetic counselor can discuss the possible outcomes of testing; options for surveillance, chemoprevention, and risk-reducing surgery; cost and legal and insurance matters surrounding genetic tests and test results; and the psychologic and familial implications that may follow. The counselor can also provide written materials that women can share with family members who may also have an inherited risk.

Screening, Prevention, and Surgical Intervention

Those with hereditary breast and ovarian cancer syndrome can begin a screening and prevention plan based on individual risk factors and family history. Ovarian cancer screening approaches are currently limited. For women with a BRCA mutation, ACOG recommends periodic screening with CA 125 and transvaginal ultrasonography beginning between the ages of 30 and 35 years or 5-10 years earlier than the earliest age of first diagnosis of ovarian cancer in the family.

Risk-reducing salpingo-oophorectomy surgery—which removes both of the ovaries and fallopian tubes—can reduce the risk of ovarian and fallopian tube cancer by about 85% to 90% among BRCA carriers. Women who have BRCA1 or BRCA2 mutations should be offered risk-reducing salpingo-oophorectomy by age 40 or when childbearing is complete. The ideal time for this surgery depends on the type of gene mutation.

‘In this population, risk-reducing salpingo-oophorectomy and pathology review must be extremely comprehensive to check for microscopic cancers in the ovaries, fallopian tubes, and abdominal cavity,’ Dr. Lu said. According to the Practice Bulletin, all tissue from the ovaries and fallopian tubes should be removed, and a complete, serial sectioning that includes microscopic examination for occult cancer should be conducted. A thorough visualization of the peritoneal surfaces with pelvic washings should be performed. Any abnormal areas should undergo biopsy.

Strategies recommended to reduce breast cancer risk in women with a BRCA mutation include semiannual clinical breast examination; an annual mammogram and annual breast magnetic resonance imaging screening beginning at age 25 or sooner based on the earliest age onset in the family; chemoprevention therapy with tamoxifen; and bilateral mastectomy to remove both breasts, which reduces the risk of breast cancer by greater than 90%-95%.

Practice Bulletin #103 “Hereditary Breast and Ovarian Cancer Syndrome” is published in the April 2009 edition of Obstetrics & Gynecology.”

_______________________________________________________

About the American College of Obstetricians & Gynecologists

The American College of Obstetricians and Gynecologists is the national medical organization representing over 53,000 members who provide health care for women.

About the Society of Gynecologic Oncologists

The Society of Gynecologic Oncologists is a national medical specialty organization of physician-surgeons who are trained in the comprehensive management of women with malignancies of the reproductive tract.  The purpose of the SGO is to improve the care of women with gynecologic cancers by encouraging research and disseminating knowledge to raise the standards of practice in the prevention and treatment of gynecologic malignancies, in cooperation with other organizations interested in women’s health care, oncology and related fields. This is reflected in the Society’s Mission statement to “promote and ensure the highest quality
of comprehensive clinical care through excellence in education and research in gynecologic cancers.”

Primary Source:  Routine Screening for Hereditary Breast and Ovarian Cancer Recommended, News Release, American College of Obstetricians & Gynecologists, March 20, 2009.