Ovarian Cancer Survivor Seeks “Compassionate Use” Drug Exemption From BioMarin to Save Her Life

Andrea Sloan, a 7-year survivor of stage 3c ovarian cancer, is seeking a “compassionate use” exemption from pharmaceutical company BioMarin to save her life. Sloan is scheduled to start treatment at the M.D. Anderson Cancer Center on September 5 and would like to obtain access to the “PARP 1/2 inhibitor” drug known as “BMN 673” by that time. A robust grassroots campaign in support of Sloan has emerged on social media and Change.org in an effort to get an affirmative response from BioMarin.

Andrea Sloan, a seven-year survivor of ovarian cancer, is seeking a compassionate use exemption from pharmaceutical company BioMarin to save her life. Sloan, the executive director of a non-profit that advocates for survivors of domestic violence and abuse, now finds herself forced to publicly advocate for herself in a last chance effort to get the cancer treatment she needs.

Andrea Sloan, a 7-year, stage 3c survivor of ovarian cancer, is seeking a “compassionate use” investigational cancer drug exemption from pharmaceutical company BioMarin to save her life. Sloan, the executive director of a non-profit that advocates for survivors of domestic violence and abuse, now finds herself forced to publicly advocate for herself in a last chance effort to get the cancer treatment she needs.

Drugs that are being tested but have not yet been approved by the U.S. Food and Drug Administration (FDA) are called “investigational drugs.” These drugs are generally available only to people who are taking part in a clinical trial. The FDA “Expanded Access” protocol — sometimes referred to as a “compassionate use” exemption — involves the use of an investigational drug outside of a clinical trial to treat a patient with a serious or immediately life-threatening disease or condition, who has no comparable or satisfactory alternative treatment options.

FDA regulations allow access to investigational drugs for treatment purposes on a case-by-case basis for an individual patient, or for intermediate-size groups of patients with similar treatment needs who otherwise do not qualify to participate in a clinical trial. Before an investigational drug can qualify for compassionate use, the patient’s physician, the FDA, and the drug manufacturer must approve such use.

Unfortunately, drug manufacturers may not always be willing or able to provide access to a drug outside of their clinical trials. By law, drug companies are not required to make their drug available through the FDA expanded access protocol, or to make more of a drug for that purpose.

Andrea Sloan, a 7-year survivor of stage 3c ovarian cancer, is seeking a compassionate use exemption from pharmaceutical company BioMarin to save her life. Sloan is scheduled to start treatment at the University of Texas M.D. Anderson Cancer Center on September 5, and she would like to obtain access to the “PARP 1/2 inhibitor” drug known as “BMN 673” by that time. A robust grassroots campaign in support of Sloan has emerged on social media and Change.org in an effort to get an affirmative response from BioMarin.

“BioMarin’s BMN 673 offers me the best chance at a long life,” said Sloan. “My doctors and the FDA agree that I am an excellent candidate for this drug and meet the criteria for compassionate use exemption. However, BioMarin’s lack of a policy on compassionate use is preventing me from gaining access to the drug I need to save my life. I respectfully implore them to reconsider and make the ethical decision to help me.” [Emphasis added]

Sloan has endured two full rounds of chemotherapy, five surgeries, and a stem cell transplant. While her cancer remains responsive to treatment, her bone marrow can no longer tolerate traditional therapies. Her world-class oncology team at M.D. Anderson believes that BioMarin’s PARP inhibitor BMN 673, which is currently being tested in a phase I solid tumor clinical trial, is the best option for Sloan’s BRCA-1 gene-mutated form of ovarian cancer.

Unfortunately, Sloan hit a barrier in gaining access to BMN 673. Further enrollment of ovarian cancer patients in the phase I solid tumor trial is now closed, and the publicly announced portion of the trial that will be entering phase III testing is only open to BRCA gene-mutated breast (but not ovarian) cancer patients. Therefore, Sloan is left with the compassionate use exemption as her only option to access the drug she needs to fight her cancer. Based on FDA requirements, Sloan qualifies for the compassionate use exemption. Data emerging from the phase I BMN 673 study suggest that the drug is a safe and effective treatment option for patients with BRCA gene-mutated ovarian cancer.

Moreover, on August 16, 2013, BioMarin announced that its medical study abstract, entitled “PARP inhibition with BMN 673 in ovarian and breast cancer patients with deleterious mutations of BRCA1 and BRCA2,” has been selected as a “late breaking” abstract by the 17th ECCO — 38th ESMO — 32nd ESTRO European Cancer Congress, which will be held from September 27 through October 1, 2013 in Amsterdam, The Netherlands. BioMarin’s oral presentation at the European Cancer Congress (scheduled for September 29, 2013) will include data presented from 28 ovarian cancer patients with deleterious germline (inherited) BRCA gene mutations, including 17 patients from the phase I BMN 673 trial dose escalation cohort (range 100 µg to 1100 µg) and 11 patients from the dose expansion cohort. Presumably, the most recent ovarian cancer patient data to be presented at the European Cancer Congress will expand upon the positive data presented by the company at the 2013 Annual Meeting of the American Society of Clinical Oncology, which indicate that positive RECIST (“Response Evaluation Criteria in Solid Tumors“) and/or CA-125 ovarian cancer patient responses occurred at BMN 673 drug doses ≥ 100 µg/d in 11 out of 17 (64%) BRCA gene-mutated ovarian and peritoneal cancer patients. The positive RECIST medical imaging findings and the CA-125 blood test results highlight the promising effectiveness of BMN 673, albeit among a small group of ovarian cancer patients.

BMN 673 is a targeted therapy designed to disrupt the tumor without traditional chemotherapy drug side effects, thereby making it an optimal treatment for Sloan.

Despite Sloan’s best efforts, she has been unable to convince BioMarin to allow compassionate use of BMN 673. BioMarin, according to Sloan, has not been cooperative, merely citing their lack of a policy on the issue. Sloan, the executive director of a non-profit that advocates for survivors of domestic violence and abuse, now finds herself forced to publicly advocate for herself in a last chance effort to save her life. Sloan is committed to advocating for meaningful reform on this topic and hopes BioMarin will lead by example in starting a national dialogue.

If you would like to help Andrea Sloan obtain compassionate use of BMN 673, please click on this picture and sign her petition at Change.org.

If you would like to help Andrea Sloan obtain compassionate use of BMN 673, please click on this picture and sign her petition at Change.org.

For those interested in supporting Andrea Sloan, please sign her petition on Change.org that urges BioMarin to grant her a compassionate use investigational cancer drug exemption for BMN 673. Also, you can follow Andrea on Twitter at @andi_sloan.

Update:

Yesterday, BioMarin issued a statement to KXAN, an Austin, Texas local affilate of NBC, in response to a in-depth news story that KXAN aired tonight regarding Andrea Sloan’s dire situation. Effectively, BioMarin rejected Andrea Sloan’s request for compassionate use of BMN 673, although its statement was worded as a general drug “expanded access” policy explanation.

BioMarin acknowledged that it allowed preapproved expanded access to one of its investigational drugs which completed phase III clinical testing last year. In terms of general guidelines for its expanded access programs, the company stated:

“We implement these [expanded access] programs when we have sufficient scientific evidence to support both the safety and the efficacy of a product for an indication. Additionally, we implement these programs only when we can ensure that access will be provided equitably, ensuring that the process is appropriately blinded, and when we are confident that the expanded access will not inhibit our clinical trial plans or clinical trials for a disease generally.”

In terms of Andrea Sloan’s specific case, BioMarin stated that it does not comment on the status of individual patients. Apparently in a refusal to grant expanded access to any preapproved patient who requests compassionate use of BMN 673 prior to completion of phase III drug testing, the company stated:

“… However, we note that, although the current data [for BMN 673] that we have looks promising, there is no data at this point to support anything beyond dosing and some preliminary safety. It is too early to know if the experimental therapy is safe or effective, or will even prolong life, until we conduct the appropriate Phase 3 trials. The data that we have is from an ongoing early stage clinical trial, and it is the first trial that we have ever done with this therapy in humans.”

Accordingly, it appears that BioMarin’s current expanded access policy for its investigational drugs, such as BMN 673, will only extend to drugs that have already completed phase III clinical trial testing.

Sources:

  • Ovarian Cancer Survivor Andrea Sloan Seeks Compassionate Use Exemption From BioMarin to Save Her Life, Press Release, Digital Journal, August 29, 2013.
  • BioMarin Provides BMN 673 Program Update, BioMarin Pharmaceutical Inc, Press Release, July 25, 2013.
  • Shen Y. et al.  BMN 673, a novel and highly potent PARP-1/2 inhibitor for the treatment of human cancers with DNA repair deficiencyClin Cancer Res. 2013 Jul 23. PMID: 23881923 [Epub ahead of print]
  • A Phase 1, First in Human, Single-arm, Open-label Study of Once a Day, Orally Administered BMN 673 in Patients With Advanced or Recurrent Solid Tumors. ClinicalTrials.gov Identifier: NCT01286987.
  • Advocate for others needs help in a fight for her life, by Shannon Wolfson & Joe Ellis, In-Depth Investigation, KXAN News, August 29, 2013.
  • BioMarin Announces Oral Presentation of BMN 673 Most Recent Data on Breast and Ovarian Cancers at the European Cancer Congress 2013, Press Release, August 16, 2013.

Caris Life Sciences Launches Molecular Profiling Service For Ovarian Cancer Patients

Caris Life Sciences announces the launch of a new molecular profiling service for ovarian cancer patients

Caris Life Sciences, Inc. (Caris), a leading biosciences company focused on enabling precise and personalized healthcare through the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic services, announced the launch of a new, Caris Target Now™ molecular profile for ovarian cancer patients. This expansion of the Caris Target Now™ offering provides individualized molecular information to treating physicians, relevant to the selection of therapies to treat this highly-lethal cancer. Ovarian cancer affects more than 20,000 women annually and produces some of the highest five-year mortality rates found among the 200+ types of cancer.

Caris Target Now™ molecular profiling examines the unique genetic and molecular make-up of each patient’s tumor so that treatment options may be matched to each patient individually.  Caris Target Now™ helps patients and their treating physicians create a cancer treatment plan based on the tumor tested. By comparing the tumor’s information with data from published clinical studies by thousands of the world’s leading cancer researchers, Caris can help determine which treatments are likely to be most effective and, just as important, which treatments are likely to be ineffective.

The Caris Target Now™ test is performed after a cancer diagnosis has been established and the patient has exhausted standard of care therapies or if questions in therapeutic management exist. Using tumor samples obtained from a biopsy, the tumor is examined to identify biomarkers that may have an influence on therapy. Using this information, Caris Target Now™ provides valuable information on the drugs that will be more likely to produce a positive response. Caris Target Now™ can be used with any solid cancer such as lung cancer, breast cancer, prostate cancer, and now, ovarian cancer.

Evidence Behind Caris Target Now™

Daniel D. Von Hoff, M.D., F.A.C.P., is the Executive Director of Caris Life Sciences' Clinical Research

A multi-center, prospective, pilot study first published in The Journal of Clinical Oncology (JCO) in October 2010 [1] — along with an accompanying editorial [2] —  determined that personalized cancer treatment tailored to a tumor’s unique genetic make-up identified therapies that increased progression free survival (PFS) over previous therapies in 27% of patients with advanced disease.

The purpose of the study was to compare PFS using a treatment regimen based on the molecular profiling (MP) of a patient’s tumor with the PFS determined for the most recent regimen on which the patient had experienced progression after taking that regimen for 6 weeks.  Unlike a typical control study, each patient was his or her own study control.  Tissue samples from patients with refractory metastatic cancer were submitted for MP in two formats including:

In many of these refractory tumors, targets for conventional therapies were identified, which was “a surprise finding,” according to Dr. Daniel Von Hoff, the Executive Director of Caris’ Clinical Research.  But the profiling also suggested therapies in cases where the treating physician was unsure regarding the next line of treatment. The MP approach was found to have clinical benefit for the individual patient who had a PFS ratio (PFS on MP selected therapy/PFS on prior therapy) of ≥ 1.3.  Among the 86 patient tumors that were profiled with Caris Target Now™:

  • 84 (98%) had a detected molecular target;
  • 66 of the 84 patients were treated with therapies that were linked to their MP results; and
  • 18 (27%) of 66 patients had a PFS ratio of ≥ 1.3 (95% CI, 17% to 38% range; one-sided, one-sample P = .007).

The study investigators concluded that it is possible to identify molecular targets in patients’ tumors. In 27% of the patients, the MP approach resulted in a longer PFS on a MP-based regimen than on the regimen that was based on physician’s choice.  “It was also encouraging to see that the overall survival in these 18 patients was better than that for the whole group of 66 patients (9.7 vs. 5 months),” said Von Hoff.

Of the 66 participants, 27% had breast cancer, 17% had colorectal cancer, and 8% had ovarian cancer; the remainder were classified as miscellaneous.  The improvement in PFS among the various types of cancer patients was as follows: 44% in patients with breast cancer, 36% in those with colorectal cancer, 20% in those with ovarian cancer, and 16% in the miscellaneous group.

The investigators in the study utilized Caris Target Now™ molecular profiling, which is currently available to oncologists and their patients.

“Oncologists commonly expect a 1-in-20 chance of patient response in 3rd- and 4th-line therapies.  This recent study suggests those odds can be improved to 1-in-4 when using therapeutic guidance provided by Caris Target Now™.”

Dr. Jeff Edenfield, a practicing oncologist with US Oncology, and routine user of Caris Target Now™

Since 2008, more than 15,000 cancer patients have received a Caris Target Now™ molecular profile. Caris Target Now™ has been designed to provide treating physicians with therapeutic options, often identifying anti-tumor agents that may not have been considered before. The Caris Target Now™ report is based on the genetic make-up of an individual patient’s tumor cross-referenced with a vast and growing proprietary database of clinical literature, correlating genetic tumor information to therapeutic response. Using biomarker-based therapies has been linked to the likelihood of a positive patient response.

James H. Doroshow, M.D., Director, Division of Cancer Treatment & Diagnosis, National Cancer Institute

In the accompanying JCO editorial, James H. Doroshow, M.D., the Director of the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis, commented that the study by Von Hoff et. al. possessed several limitations. [2] The stated limitations of the study include (i) uncertainty surrounding the achievement of the study’s primary end point based upon use of the time-to-disease progression (TTP) index; (ii) limited prior experience with patients as their own controls, and (iii) lack of study randomization.  Despite these limitations, Dr. Doroshow noted that important lessons can be learned from the study conducted by Von Hoff et. al.

“First and foremost, this study vividly reminds us that the need for therapeutic intervention arises one patient at a time. When we sit with an individual who is trying to live with an advanced solid tumor after having already received several different chemotherapy regimens, it is unlikely that any published prognostic index or gene signature, as currently implemented, will be of much help in decision making—for physicians or for patients. [citation omitted]. Thus, a truly urgent need exists to move past the empiric therapeutic paradigm that launched the first half century of systemic oncologic treatment. [citation omitted]. Von Hoff et al have taken a noteworthy, albeit somewhat flawed, first step in this direction in their attempt to imagine a novel paradigm for cancer therapy, using the techniques of molecular tumor characterization on an individual patient basis. Future investigators of new cancer therapies should learn from this initial effort and focus on how these rapidly evolving molecular tools can be used in the development of an entirely new investigative model for the systemic treatment of cancer.”

Caris is currently conducting and initiating additional studies of Caris Target Now™ molecular tumor profiling through collaboration with leading institutions and cancer centers. 

With 300% growth in utilization in 2010, medical oncologists are recognizing the utility and value of this novel approach in providing improved care to patients. Physician adoption is rapidly accelerating, as Caris recently reached the threshold of providing Caris Target Now™ services to more than 1,000 patients per month. This new introduction for ovarian cancer is most relevant for physicians treating women who have progressed on platinum-based therapy and/or who need guidance for third-line treatment options. Caris Target Now™ for ovarian cancer offers the opportunity for these women to benefit from personalized and targeted therapy guidance based upon molecular profiling.

“Ovarian cancer is a highly-lethal cancer that presents distinct diagnostic and therapeutic challenges, often presenting no major symptoms until the cancer has metastasized,” said Dr. Les Paul, Caris’ Senior Vice President for Medical Affairs. “Choosing the optimal therapeutic intervention at the earliest possible stage is critical to extending progression free survival in ovarian cancer patients. With the introduction of the Caris Target Now™ ovarian profile, we are able to support physicians with as much information as possible, including the latest relevant clinical literature citations to aid them in making the best therapeutic decision possible for each patient.”

Examples of the potential use of an existing clinical trial drug to target a specific molecular characteristic possessed by an ovarian cancer include:

Use of Molecular Profiling By Leading Medical Institutions; Sponsorship By A Charitable Foundation

It should be noted that molecular profiling is already being used in clinical practice at several leading cancer institutions.  At Massachusetts General Hospital, (MGH), The MGH Cancer Centre uses a PCR-based mutation-detection assay and state-of-the-art robotic technology, called “SNaPshot,” to look for 130 known gene mutations in tumor tissue. “We are already using molecular profiling for all our lung cancer patients,” said Jeffrey Settleman, Ph.D., scientific director at the MGH Cancer Center, to Medscape Oncology in 2009. [12] “This has already had an impact on treatment decisions, and it appears to be improving treatment. We have seen better response rates and we hope that this will translate into better survival.”  In fact, MGH is engaged currently in the largest study aimed at matching tumor genomes to potential anticancer treatments. [13] It is our understanding that MGH performs molecular profiling currently on melanoma, leukemia, brain and metastatic breast cancer, and metastatic adenocarcinoma that start in the lung, colon or rectum.

Several other institutions are in the process of developing or have developed their own systems, including the University of Texas M.D. Anderson Cancer Center [14], and the Dana-Farber Cancer Institute [15].  All are striving to profile individual tumors so that therapy can be personalized, which means that it has a better chance of working because it targets specific mutations found in a patient’s tumor. The MP approach also prevents patients from being exposed to drugs that have a limited chance of success, eliminating toxicity and improving quality of life.

We should also note the Clearity Foundation sponsors molecular profiling services on behalf of ovarian cancer patients at no cost. The Clearity Foundation is a 501(c)(3) not-for-profit, founded by Laura Shawver, Ph.D., who is an ovarian cancer survivor and research scientist.  The Clearity Foundation seeks to improve treatment outcomes in recurrent and progressive ovarian cancer patients by providing diagnostic services that determine the molecular profile of the individual patient with the belief that a molecular “blueprint” is crucial to finding appropriate treatments.

About Caris Target Now™

Caris Target Now™ is a comprehensive tumor analysis coupled with an exhaustive clinical literature search, which matches appropriate therapies to patient-specific biomarker information to generate an evidence-based treatment approach. Caris Target Now™ testing provides information that may help when considering potential treatment options.

Caris Target Now™ begins with an immunohistochemistry (IHC) analysis. An IHC test measures the level of important proteins in cancer cells providing clues about which therapies are likely to have clinical benefit and then what additional tests should be run.

If there is access to a frozen sample of patient tissue available, Caris may also run a gene expression analysis by microarray. The microarray test looks for genes in the tumor that are associated with specific treatment options.

As deemed appropriate based on each patient, Caris will run additional tests. Fluorescent In-Situ Hybridization (FISH) is used to examine gene copy number variation (i.e., gene amplification) in the tumor. Polymerase Chain Reaction (PCR) or DNA sequencing is used to determine gene mutations in the tumor DNA.

Caris takes the results from each test and applies the published findings from thousands of the world’s leading cancer researchers. Based on this analysis, Caris Target Now™ identifies potential therapies for patients and their treating physicians to discuss.

Caris Target Now™ was developed and its performance characteristics were determined by Caris, a CLIA-certified medical laboratory in compliance with the U.S. Clinical Laboratory Amendment Act of 1988 and all relevant U.S. state regulations. It has not been approved by the United States Food and Drug Administration.

About Caris Life Sciences

Caris Life Sciences, a leading biosciences company, specializes in the development and commercialization of the highest quality anatomic pathology, molecular profiling, and blood-based diagnostic technologies, in the fields of oncology, dermatopathology, hematopathology, gastrointestinal pathology and urologic pathology. The company provides academic-caliber consultations for patients every day, through its industry-leading team of expert, subspecialty pathologists. Caris also offers advanced molecular analyses of patient samples through prognostic testing services and genomic, transcriptomic, and proteomic profiling to assist physicians in their treatment of cancer. Currently, Caris is developing the Carisome™ platform, a proprietary, blood-based technology for diagnosis, prognosis, and theranosis of cancer and other complex diseases. The company is headquartered in the Dallas metroplex, and operates laboratories at the headquarters, as well as in the Phoenix and Boston metro areas.

About Daniel Von Hoff, M.D., FACP, Executive Director, Caris Life Sciences Clinical Research

Daniel D. Von Hoff, M.D., is currently physician-in-chief and director of translational research at Translational Genomics Research Institute (TGen) in Phoenix, Arizona. He is also chief scientific officer for US Oncology and the Scottsdale Healthcare’s Clinical Research Institute.  He holds an appointment as clinical professor of medicine at the University of Arizona College of Medicine.

Dr. Von Hoff’s major interest is in the development of new anticancer agents, both in the clinic and in the laboratory. He and his colleagues were involved in the beginning of the development of many of the agents now in routine use, including: mitoxantrone, fludarabine, paclitaxel, docetaxel, gemcitabine, irinotecan, nelarabine, capecitabine, lapatinib and others.

At present, Von Hoff and his colleagues are concentrating on the development of molecularly targeted therapies particularly for patients with advanced pancreatic cancer. Dr. Von Hoff’s laboratory interests and contributions have been in the area of in vitro drug sensitivity testing to individualize treatment for the patient, mechanisms of gene amplification, particularly of extrachromosomal DNA, and understanding of and targeting telomere maintenance mechanisms. His laboratory work now concentrates on the discovery of new targets in pancreatic cancer.

Dr. Von Hoff has published more than 543 papers, 133 book chapters, and more than 956 abstracts. Dr. Von Hoff  also served on President Bush’s National Cancer Advisory Board from June 2004 through March 2010.

Dr. Von Hoff is the past president of the American Association for Cancer Research(AACR) (the world’s largest cancer research organization), a fellow of the American College of Physicians, and a member and past board member of the American Society of Clinical Oncology (ASCO). He is a founder of ILEX™ Oncology, Inc. (acquired by Genzyme after Ilex had 2 agents, alemtuzumab and clofarabine approved for patients with leukemia). He is founder and the editor emeritus of Investigational New Drugs – The Journal of New Anticancer Agents; and, editor-in-chief of Molecular Cancer Therapeutics. He is also proud to have been a mentor and teacher for multiple medical students, medical oncology fellows, graduate students, and post-doctoral fellows. He is a co-founder of the AACR/ASCO Methods in Clinical Cancer Research Workshop.

References:

1/ Von Hoff DD, Stephenson JJ Jr, Rosen P, et. al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol. 2010 Nov 20;28(33):4877-83. Epub 2010 Oct 4. PubMed PMID: 20921468.

2/ Doroshow JH. Selecting systemic cancer therapy one patient at a time: Is there a role for molecular profiling of individual patients with advanced solid tumors? J Clin Oncol. 2010 Nov 20; 28(33):4869-71. Epub 2010 Oct 4. PMID: 20921466.

3/Addition of Dasatinib (Sprycel) to Standard Chemo Cocktail May Enhance Effect in Certain Ovarian Cancers, by Paul Cacciatore, Libby’s H*O*P*E*™, April 19, 2009.

4/UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®), by Paul Cacciatore, Libby’s H*O*P*E*™, November 11, 2009.

5/BMS-345541 + Dasatinib Resensitizes Carboplatin-Resistant, Recurrent Ovarian Cancer Cells, by Paul Cacciatore, Libby’s H*O*P*E*™, July 1, 2010.

6/PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, by Paul Cacciatore, Libby’s H*O*P*E*™, April 23, 2010.

7/ Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriersN Engl J Med. 2009 Jul 9;361(2):123-34. Epub 2009 Jun 24. PMID: 19553641.

8/Audeh MW, Penson RT, Friedlander M, et al. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol 2009;27(supplement):p. 15S.

9/PARP Inhibitor MK-4827 Shows Anti-Tumor Activity in First Human Clinical Study, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 17, 2010.

10/PI3K Pathway: A Potential Ovarian Cancer Therapeutic Target?, by Paul Cacciatore, Libby’s H*O*P*E*™,  November 20, 2009.

11/Endocyte’s EC145 Produces Significant Anti-Tumor Activity In Advanced Stage Chemoresistant Ovarian Cancer Patients, by Paul Cacciatore, Libby’s H*O*P*E*™, October 21, 2009.

12/Massachusetts General Hospital Cancer Center To Genetically Profile All Patient Tumors, by Paul Cacciatore, Libby’s H*O*P*E*™, March 14, 2009.

13/Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results, by Paul Cacciatore, Libby’s H*O*P*E*™, August 3, 2010.

14/An Initiative for Molecular Profiling in Advanced Cancer Therapy (IMPACT) Trial. A Molecular Profile-Based Study in Patients With Advanced Cancer Treated in the Investigational Cancer Therapeutics Program, University of Texas M.D. Anderson Cancer Center, ClinicalTrials.gov Identifier: NCT00851032.

15/Dana-Farber Researchers “OncoMap” The Way To Personalized Treatment For Ovarian Cancer, by Paul Cacciatore, Libby’s H*O*P*E*™, November 16, 2010.

Sources:

Additional Information:

New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition

U.K. researchers develop a new test that could be used to select ovarian cancer patients who will benefit from a new class of drugs called “PARP inhibitors.”

U.K. researchers have developed a new test that could be used to select which patients with ovarian cancer will benefit from a new class of drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors,” according to preclinical research presented at the National Cancer Research Institute (NCRI) Cancer Conference held in Liverpool on November 8th.  According to the test results, approximately 50 percent of all patients with ovarian cancer may benefit from PARP inhibitors.

Dr. Asima Mukhopadhyay Discusses Her Research Into A More Tailored Treatment For Ovarian Cancer

PARP Inhibition & BRCA Gene Mutations: Exploiting Ovarian Cancer’s Inherent Defects

  • Genetics 101

DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called “genes.”

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein. Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene. Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

  • Targeting DNA Repair Through PARP Inhibition

Targeting DNA repair through PARP inhibition in BRCA gene-mutated cancer cells. "DSB" stands for DNA "Double Stand Break." (Photo Credit: AstraZeneca Oncology)

Normally functioning BRCA1 and BRCA2 genes are necessary for DNA repair through a process known as “homologous recombination” (HR).  HR is a form of genetic recombination in which two similar DNA strands exchange genetic material. This process is critical to a cell’s ability to repair its DNA in the event that it becomes damaged, so the cell can continue to function.

A cell’s DNA structure can be damaged by a wide variety of intentional (i.e., select cancer treatments) or unintentional (ultraviolet light, ionizing radiation, man-made chemicals, etc.) factors.  For example, chemotherapy regimens used in the treatment of cancer, including alkylating agents, topoisomerase inhibitors, and platinum drugs, are designed to damage DNA and prevent cancer cells from reproducing.

In approximately 10 percent of inherited ovarian cancers, the BRCA 1 or BRCA2 gene is damaged or mutated.  When the BRCA1 or BRCA2 gene is mutated, a backup type of DNA repair mechanism called “base-excision repair” usually compensates for the lack of DNA repair by HR.  Base-excision repair represents a DNA “emergency repair kit.” DNA repair enzymes such as PARP, whose activity and expression are upregulated in tumor cells, are believed to dampen the intended effect of chemotherapy and generate drug resistance.

When the PARP1 protein – which is necessary for base-excision repair – is inhibited in ovarian cancer cells possessing a BRCA gene mutation, DNA repair is drastically reduced, and the cancer cell dies through so-called “synthetic lethality.”  In sum, PARP inhibitors enhance the potential of chemotherapy (and radiation therapy) to induce cell death.  Healthy cells are unaffected if PARP is blocked because they either contain one or two working BRCA1 or BRCA2 genes which do an effective DNA repair job through use of HR.

  • PARP Inhibitors: A New Class of Targeted Therapy

PARP inhibitors represent a new, targeted approach to treating certain types of cancers. PARP inhibition has the potential to overwhelm cancer cells with lethal DNA damage by exploiting impaired DNA repair function inherent in some cancers, including breast and ovarian cancers with defects in the BRCA1 gene or BRCA 2 gene, and other DNA repair molecules. Inhibition of PARP leads to the cell’s failure to repair single strand DNA breaks, which, in turn, causes double strand DNA breaks. These effects are particularly detrimental to cancer cells that are deficient in repairing double strand DNA breaks and ultimately lead to cancer cell death.

PARP inhibitors are the first targeted treatment to be developed for women with inherited forms of breast and ovarian cancer carrying faults or mutations in a BRCA gene. Early results from clinical trials are showing promise for patients with the rare inherited forms of these cancers.

Study Hypothesis: PARP Inhibitors May Be Effective Against a Large Proportion of Non-Inherited Ovarian Cancers

As noted above, PARP inhibitors selectively target HR–defective cells and have shown good clinical activity in hereditary breast and ovarian cancers associated with BRCA1 or BRCA2 mutations. The U.K. researchers hypothesized that a high proportion (up to 50%) of sporadic (non-inherited) epithelial ovarian cancers could be deficient in HR due to genetic or epigenetic inactivation of the BRCA1, BRCA2, or other HR-related genes, which occur during a woman’s lifetime. Therefore, PARP inhibitors could prove beneficial to a larger group of ovarian cancer patients, assuming a patient’s HR status can be properly identified.

To test this hypothesis, the U.K. researchers developed a functional assay to test the HR status of primary ovarian cancer cultures derived from patients’ ascitic fluid. The test, referred to as the “RAD51 assay,” scans the cancer cells and identifies which tumor samples contain defective DNA repair ability (i.e., HR-deficient) which can be targeted by the PARP inhibitor. The researchers tested the HR status of each culture, and then subjected each one to in vitro cytotoxicity testing using the potent PARP inhibitor PF-01367338 (formerly known as AG-14699).

Study Results: 90% of HR-Deficient Ovarian Cancer Cultures Respond to PARP Inhibition

Upon testing completion, the U.K. researchers discovered that out of 50 primary cultures evaluated for HR status and cytotoxicity to the PARP inhibitor, approximately 40% of the cultures evidenced normal HR activity, while 60 percent of the cultures evidenced deficient HR activity. Cytotoxicity to PARP inhibitors was observed in approximately 90 percent of the HR deficient cultures, while no cytotoxicity was seen in the cultures that evidenced normal HR activity. Specifically, the PARP inhibitor PF-01367338 was found to selectively block the spread of ovarian tumor cells with low RAD51 expression.

Conclusion

Based upon the findings above, the U.K. researchers concluded that HR-deficient status can be determined in primary ovarian cancer, and that such status correlates with in vitro response to PARP inhibition.  Accordingly, the researchers concluded that potentially 50 to 60 percent of ovarian cancers could benefit from PARP inhibitors, but they note that use of the RAD51 assay as a biomarker requires additional clinical trial testing.  Although the RAD51 assay test that was used by the U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Upon presentation of the testing results, Dr. Asima Mukhopadhyay said:

“Our results show that this new test is almost 100 percent effective in identifying which ovarian cancer patients could benefit from these promising new drugs.  We have only been able to carry out this work because of the great team we have here which includes both doctors and scientists.”

The team based at Queen Elizabeth Hospital, Gateshead and the Newcastle Cancer Centre at the NICR, Newcastle University collaborated with Pfizer to develop the new assay to test tumor samples taken from ovarian cancer patients when they had surgery.

Dr. Mukhopadhyay added:

“Now we hope to hone the test to be used directly with patients and then carry out clinical trials. If the trials are successful we hope it will help doctors treat patients in a personalised and targeted way based on their individual tumour. It is also now hoped that PARP inhibitors will be useful for a broad range of cancers and we hope this test can be extended to other cancer types.”

Dr. Lesley Walker, Cancer Research UK’s director of cancer information, said:

“It’s exciting to see the development of promising new ‘smart’ drugs such as PARP inhibitors. But equally important is the need to identify exactly which sub-groups of patients will benefit from these new treatments. Tests like this will become invaluable in helping doctors get the most effective treatments quickly to patients, sparing them from unnecessary treatments and side effects.”

Sources:

Additional Information:

________________________________________

About The Researchers

Dr. Asima Mukhopadhyay is a doctor and clinical research fellow working at the Queen Elizabeth Hospital, Gateshead and the Northern Institute for Cancer Research at Newcastle University. Queen Elizabeth Hospital is run by Gateshead Health NHS Foundation Trust and is the home for gynecological oncology for the North East of England and Cumbria. She received a bursary to attend the conference, which was awarded on the merit of her work.

Key researchers on the study included Dr. Richard Edmondson, who was funded by the NHS, and Professor Nicola Curtin, who was funded by the Higher Education Funding Council. Dr Asima Mukhopadhyay is funded by the NHS.

Dr Richard Edmondson is a consultant gynecological oncologist at the Northern Gynaecological Oncology Centre, Gateshead and a Senior Lecturer at the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, and is a member of the research team.

Nicola Curtin is Professor of Experimental Cancer Therapeutics at Newcastle University and is the principal investigator of this project.

Current and future work involves working closely with Pfizer. Pfizer developed one of the PARP inhibitors and supported this project.

About The Newcastle Cancer Centre

The Newcastle Cancer Centre at the Northern Institute for Cancer Research is jointly funded by three charities: Cancer Research UK, Leukaemia and Lymphoma Research, and the North of England Children’s Cancer Research Fund.  Launched in July 2009, the Centre is based at the Northern Institute for Cancer Research at Newcastle University.  The Centre brings together some of the world’s leading figures in cancer research and drug development. They play a crucial role in delivering the new generation of cancer treatments for children and adults by identifying new drug targets, developing new drugs and verifying the effectiveness and safety of new treatments. This collaborative approach makes it easier for researchers to work alongside doctors treating patients, allowing promising new treatments to reach patients quickly.

About the NCRI Cancer Conference

The National Cancer Research Institute (NCRI) Cancer Conference is the UK’s major forum for showcasing the best British and international cancer research. The Conference offers unique opportunities for networking and sharing knowledge by bringing together world leading experts from all cancer research disciplines. The sixth annual NCRI Cancer Conference was held from November 7-10, 2010 at the BT Convention Centre in Liverpool. For more information visit www.ncri.org.uk/ncriconference.

About the NCRI

The National Cancer Research Institute (NCRI) was established in April 2001. It is a UK-wide partnership between the government, charity and industry which promotes cooperation in cancer research among the 21 member organizations for the benefit of patients, the public and the scientific community. For more information visit www.ncri.org.uk.

NCRI members include: the Association of the British Pharmaceutical Industry (ABPI); Association for International Cancer Research; Biotechnology and Biological Sciences Research Council; Breakthrough Breast Cancer; Breast Cancer Campaign; CancerResearch UK; CHILDREN with LEUKAEMIA, Department of Health; Economic and Social Research Council; Leukaemia & Lymphoma Research; Ludwig Institute for Cancer Research; Macmillan Cancer Support; Marie Curie Cancer Care; Medical Research Council; Northern Ireland Health and Social Care (Research & Development Office); Roy Castle Lung Cancer Foundation; Scottish Government Health Directorates (Chief Scientist Office);Tenovus; Welsh Assembly Government (Wales Office of Research and Development for Health & Social Care); The Wellcome Trust; and Yorkshire Cancer Research.

PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity

Olaparib (AZD2281), a new type of cancer drug known as a “PARP inhibitor,” produced promising results in patients with platinum-refractory, platinum-resistant, and platinum-sensitive ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation.

A new type of cancer drug — known as a “PARP inhibitor” — produced promising results in patients with ovarian cancer linked to an inherited BRCA1 or BRCA2 gene mutation. The trial results were published online in the Journal of Clinical Oncology on April 19th.

Scientists at The Institute of Cancer Research (ICR) and The Royal Marsden Hospital, working with pharmaceutical company KuDOS Pharmaceuticals, now a subsidiary of AstraZeneca, found the experimental drug olaparib shrank or stabilized tumors in approximately half of ovarian cancer patients possessing BRCA1 or BRCA2 mutations.

The five-year survival rate for ovarian cancer is just 40 per cent as the majority of patients are diagnosed with an advanced form of the disease. Most patients initially respond well to radical surgery and platinum and taxane-based chemotherapy, but relapse after an average of 18 months. Subsequent treatments generally become less effective as patients build up resistance.

Professor Stan Kaye, Head of Section of Medicine, Institute of Cancer Research; Head of Drug Development Unit, The Royal Marsden Hospital; and Cancer Research UK-funded scientist

“There is an urgent need to find new drugs for women diagnosed with ovarian cancer,” says Professor Stan Kaye, Head of the Section of Medicine at the ICR and Head of the Drug Development Unit at The Royal Marsden Hospital and a Cancer Research UK-funded scientist. “Olaparib is still in early-stage testing but the results so far are very encouraging. These findings raise the possibility that carefully selected patients in future may well be offered olaparib as an alternative to chemotherapy during the course of their treatment.”

Between 2005 and 2008, about 50 women with confirmed or suspected BRCA1 or BRCA2 mutations began treatment with olaparib in a dose escalation and single-stage expansion of a Phase I trial. Twenty patients responded with their tumors shrinking or with significant falls in their ovarian cancer marker CA125, or both. The disease also stabilized in three patients. The drug was effective for an average of seven months. Notably, several patients are still taking olaparib (for nearly two years). Drug side-effects were generally mild, especially when compared to current chemotherapy treatments.

Olaparib is a new type of drug known as a PARP inhibitor that works by turning a tumor’s specific genetic defect against itself. In susceptible cells, olaparib prevents the repair of naturally occurring breaks in DNA, which healthy cells are able to repair. Susceptible cancer cells – those with an existing defect in a DNA repair pathway caused by a mutation in the BRCA1 or BRCA2 genes – are unable to repair themselves, and therefore, die.

Platinum-based chemotherapy, particularly carboplatin, is one of the main treatments used for ovarian cancer. When this treatment ceases to be effective, theoretically, olaparib might be less effective too, so the ICR scientists examined whether olaparib would still benefit patients whose response to previous platinum-based drugs was limited. Finding new drugs to treat these “platinum-resistant” ovarian cancer patients (those who relapsed within six months of previous platinum therapy) is a particularly high priority as they have a lower chance of benefiting from re-treatment with chemotherapy and a poorer prognosis.

The research team found that the clinical benefit rate with olaparib was indeed higher — 70% — among patients with “platinum-sensitive disease” (disease recurrence more than six months after previous platinum therapy). Crucially, however, the clinical benefit rate was still 46% in platinum resistant patients.

ICR Study Findings:

  • 50 patients participated in the study (13 had platinum-sensitive disease, 24 had platinum-resistant disease, and 13 had platinum-refractory disease (according to platinum-free interval).
  • 20 patients (40%) achieved complete or partial responses under RECIST (Response Evaluation Criteria in Solid Tumors) criteria and/or tumor marker (CA125) responses.
  • Overall clinical benefit rate (complete response + partial response + stable disease) = 46%.
  • Median response duration was 28 weeks.
  • There was a significant association between the clinical benefit rate and platinum-free interval across the platinum-sensitive, resistant, and refractory patient subgroups (69%, 45%, and 23%, respectively).
  • Analyses indicated associations between platinum sensitivity and extent of olaparib response.
  • CONCLUSION: Olaparib has antitumor activity in BRCA1/2 mutation ovarian cancer, which is associated with platinum sensitivity.

Up to 15 per cent of breast and ovarian cancers have known BRCA1 or BRCA2 mutations on blood testing and, importantly, laboratory data strongly suggests that olaparib may also be effective in cancers linked to DNA repair defects not caused by BRCA1 and BRCA2 mutations. This could apply in about half the cases of the most common histological type of ovarian cancer.

“We have good reason for thinking that the benefit seen with olaparib in BRCA mutation-linked ovarian cancer may well extend to a broader population of patients with this disease,” says Professor Kaye.

Randomised trials of olaparib – in which some patients receive the drug and others a placebo – are underway and results will be available later this year.

KuDOS Pharmaceuticals (a wholly owned subsidiary of AstraZeneca) was the major funder of the trial, along with Cancer Research UK and the National Institute for Health Research. Olaparib was identified and developed at KuDOS Pharmaceuticals and subsequently at AstraZeneca.

PARP Inhibitor Clinical Trials:

To view a list of open ovarian cancer clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open solid tumor clinical trials that are testing olaparib (AZD2281), click here.

To view a list of open ovarian cancer clinical trials that are testing various PARP inhibitors, click here.

To view a list of open solid tumor clinical trials that are testing various PARP inhibitors, click here.

About The Institute of Cancer Research (ICR)

* The ICR is Europe’s leading cancer research centre.

* The ICR has been ranked the UK’s top academic research centre, based on the results of the Higher Education Funding Council’s Research Assessment Exercise.

* The ICR works closely with partner The Royal Marsden NHS Foundation Trust to ensure patients immediately benefit from new research. Together the two organisations form the largest comprehensive cancer centre in Europe.

* The ICR has charitable status and relies on voluntary income, spending 95 pence in every pound of total income directly on research.

* As a college of the University of London, the ICR also provides postgraduate higher education of international distinction.

* Over its 100-year history, the ICR’s achievements include identifying the potential link between smoking and lung cancer which was subsequently confirmed, discovering that DNA damage is the basic cause of cancer and isolating more cancer-related genes than any other organization in the world.

* The ICR is home to the world’s leading academic drug development team. Several important anti-cancer drugs used worldwide were synthesised at the ICR and it has discovered an average of two preclinical candidates each year over the past five years.

For more information visit www.icr.ac.uk.

About The Royal Marsden Hospital

The Royal Marsden opened its doors in 1851 as the world’s first hospital dedicated to cancer treatment, research and education. Today, together with its academic partner, The Institute of Cancer Research, it is the largest and most comprehensive cancer centre in Europe treating over 40,000 patients every year. It is a centre of excellence, and the only NHS Trust to achieve the highest possible ranking in the Healthcare Commission’s Annual Health Check for the third year in a row. Since 2004, the hospital’s charity, The Royal Marsden Cancer Campaign, has helped raise over £43 million to build theatres, diagnostic centres, and drug development units. Prince William became President of The Royal Marsden in 2007, following a long royal connection with the hospital.

For more information, visit www.royalmarsden.nhs.uk

About Cancer Research UK

* Cancer Research UK is the world’s leading charity dedicated to beating cancer through research.

* The charity’s groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.

* Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last thirty years.

* Cancer Research UK supports research into all aspects of cancer through the work of more than 4,800 scientists, doctors and nurses.

* Together with its partners and supporters, Cancer Research UK’s vision is to beat cancer.

For further information about Cancer Research UK’s work or to find out how to support the charity, please call 020 7121 6699 or visit www.cancerresearchuk.org

About Experimental Cancer Medicine Centre (ECMC)

Experimental Cancer Medicine Centre (ECMC) status has been awarded to 19 centres in the UK that are specialist centres conducting research into new cancer treatments. The aim is to bring together cancer doctors, research nurses and lab scientists to make clinical trials of new treatments quicker and easier. The ECMC initiative is funded by Cancer Research UK and the Departments of Health of England, Scotland, Wales and Northern Ireland. Together they are giving a total of £35 million pounds over five years to the 19 centres. The centres will use this money to run trials of new and experimental treatments. They will also analyse thousands of blood and tissue samples (biopsies) to help find out more about how treatments work and what happens to cancer cells.

Sources: