Targeting DNA repair through PARP inhibition

Sources of DNA damage

- Ultraviolet light
- lonizing radiation
- Man-made and natural chemicals
- Reactive oxygen species
 - most are generated "endogenously"
- ~100,000,000,000,000 DNA lesions in a human body every day¹⁻³

Types of DNA damage and repair

Type of damage:

Singlestrand breaks

Doublestrand breaks (SSBs) (DSBs)

Bulky adducts

06alkylguanine

Insertions & deletions

Cancer cells are highly susceptible to DNA repair inhibition

Cancer cells

- undergo deregulated proliferation
 - less time for DNA repair than in normal cells
- grow under stress, which causes ongoing DNA damage
- have DNA repair defects
 - mutator phenotype
 - allow growth despite ongoing genome instability
- are reliant on the DNA repair pathways they still retain

PARP-1 is a key enzyme involved in the repair of single-strand DNA breaks

Inhibiting PARP-1 increases double-strand DNA damage

Selective effect of PARP-1 inhibition on cancer cells with BRCA1 or BRCA2 mutation (an example of HR-deficient cells)

Normal cell

DSB
repaired
effectively
via HR
pathway

Cell survival

BRCA-deficient cancer cell

Deficient HR pathwayDSB not repaired

Cancer cell death

BRCA1 and BRCA2 -/- embryonic stem cells are very sensitive to PARP inhibition

Log surviving fraction -1 Wild type BRCA2 +/- BRCA2 -/-108 10-7 10-6 10-5 PARP inhibitor concentration (M) Increased levels of chromosomal aberrations in PARP inhibitor treated BRCA2 -/- cells

PARP inhibition research at AstraZeneca

- AstraZeneca is evaluating the PARP-1 inhibition approach to cancer treatment
- AstraZeneca is investigating a personalized healthcare approach in this area
- Earlier clinical trial results have been reported and Phase II clinical trials are underway¹⁻⁵