2011 ASCO Annual Meeting Abstracts (Including Ovarian Cancer) Made Publicly Available Today

More than 30,000 cancer specialists from around the world will gather at the 2011 American Society of Clinical Oncology (ASCO) Annual Meeting to discuss the latest innovations in research, quality, practice and technology in cancer.

More than 30,000 cancer specialists from around the world will gather at the 2011 American Society of Clinical Oncology (ASCO) Annual Meeting to discuss the latest innovations in research, quality, practice and technology in cancer.

The meeting will be held June 3-7, 2011 at McCormick Place located in Chicago, Illinois. This meeting will be the platform for the release of thousands of scientific abstracts — highly anticipated research news for many people, including patients, caregivers, and the general public. Today, many of those abstracts were made publicly available online (see below).

The 2011 Annual Meeting will center on a theme of “Patients, Pathways, Progress.” The theme, which was selected by ASCO President George W. Sledge, Jr., M.D., promises to:

  • Represent “patients first,” said Dr. Sledge. “Everything we do as a Society has, as its eventual goal, the reduction of cancer mortality and morbidity. We’re on the front line in the war against cancer.”
  • Focus on the molecular, clinical and research pathways that are used to find, develop and implement new treatments for people living with cancer.
  • Celebrate the progress that has already been made in the treatment of cancer, while also reaffirming ASCO’s commitment to aggressive advancements in cancer research in the future.
News announced during the Annual Meeting will include the latest findings from cancer clinical trials, including new drug studies that could change current standards of care. ASCO shares this timely information with the public in a variety of ways. Free patient-friendly summaries of research news highlights from this year’s Annual Meeting will be available via ASCO’s patient information website, Cancer.Net (www.cancer.net). Cancer.Net will post scientific news as soon as it becomes publicly available, on both its homepage and its ASCO Annual Meetings section. The offerings on Cancer.Net include:
  • Easy-to-read summaries that put the top scientific news into context for patients.
  • Videos and podcasts of national and international cancer experts, breaking down the science into specific disease areas and explaining what the studies mean for people with cancer.
  • A news archive from previous ASCO Annual Meetings, which is searchable by year or disease type.

To receive ASCO Annual Meeting breaking news via email, you can sign up now to receive special editions of the newsletter Inside Cancer.Net. You can also follow Cancer.Net on Facebook or Twitter, where real-time updates will also be posted.

Medical abstracts from this year’s meeting were released today at 6:00 P.M. EDT/3:00 P.M. PDT, and additional studies will be released each day of the event in June.

The abstract categories released today, which may be of interest to an ovarian cancer survivor, include the following:

Cancer Prevention/Epidemiology

Developmental Therapeutics – Clinical Pharmacology and Immunotherapy

Gynecologic Cancer

OVA1 Blood Test Detects Ovarian Cancer In Women With A Known Ovarian Mass More Accurately Than CA-125

A study published online in Obstetrics & Gynecology reports that the OVA1 blood test detects ovarian cancer in women with a previously discovered ovarian mass more accurately than the CA-125 blood test. The study also considers OVA1’s place in future surgical referral guidelines.

A study published online ahead of print in the June 2011 edition of Obstetrics & Gynecology demonstrated that American College of Obstetrics and Gynecology (ACOG) guidelines for determining the likelihood that an ovarian mass is cancerous prior to surgery would accurately identify more women with ovarian cancer if the OVA1 blood test were used in place of the currently recommended CA-125 (cancer antigen 125) blood test. The study builds on prior research that shows accurate assessment of an ovarian mass for cancer prior to surgery can affect both treatment decisions and health outcomes for women with ovarian cancer.

… When OVA1 was used in place of CA 125 as recommend in the [ACOG] guidelines, 94% of malignancies in women of all ages in the study were accurately detected compared to 77% with CA-125. In addition, OVA1 improved sensitivity in premenopausal women, accurately detecting 91% of women with ovarian cancer in fewer than 58% with CA125. … The study also showed that the OVA1 test was about two times more likely to incorrectly identify women as high risk for ovarian cancer when they were not (a “false positive“) as compared to the CA-125 test overall. … 

OVA1 is the first test cleared by the U.S. Food and Drug Administration (FDA) for aiding in the pre-surgical evaluation of a woman’s ovarian mass for cancer. Vermillion, Inc., a molecular diagnostics company, developed OVA1, and Quest Diagnostics Incorporated, the world’s leading diagnostic testing company, offers OVA1 testing services in the United States and India. Quest Diagnostics and Vermillion both participated in the study and Vermillion also helped fund the study. Neither company had any involvement in the development of the manuscript.

Clinical practice guidelines recommend that women with ovarian cancer be under the care of a gynecologic oncologist, although only an estimated one-third of initial surgeries for ovarian cancer are performed by these specialists. ACOG guidelines for the management of ovarian masses recommend that physicians evaluate several factors, including menopausal status, imaging findings, family history, and CA 125 blood test levels, to divide women into low- and high-risk categories on which treatment plans, including surgical referral, are based.

The study evaluated the performance of the ACOG guidelines using the CA-125 test versus the OVA1 test in 516 women scheduled for surgery for an ovarian mass across a diverse group of primary and specialty care centers. When OVA1 was used in place of CA-125 as recommend in the guidelines, 94% of malignancies in women of all ages in the study were accurately detected compared to 77% with CA 125. In addition, OVA1 improved sensitivity in premenopausal women, accurately detecting 91% of women with ovarian cancer in fewer than 58% with CA-125.

Rachel Ware Miller, M.D., Assistant Professor, Gynecologic Oncology, Markey Cancer Center, University of Kentucky

“The high sensitivity in premenopausal women and early stage cancers is where CA-125 and the College guidelines have underperformed,” wrote investigator Rachel Ware Miller, M.D., assistant professor gynecologic oncology at the University of Kentucky’s Markey Cancer Center, in the study. ” Identifying these patients for referral is valuable because many are not receiving appropriate surgical staging and treatment. An effective preoperative test, particularly for younger women and early-stage cancers, can have a favorable effect on women’s health as survival is better in these populations.”

OVA1 when used with the College guidelines was also effective at detecting advanced disease, when surgery and chemotherapy can “improve overall survival,” wrote Dr. Miller.

The study also showed that the OVA1 test was about two times more likely to incorrectly identify women as high risk for ovarian cancer when they were not (a “false positive“), as compared to the CA-125 test overall. However, as OVA1 is only indicated for women for whom surgery is already planned, a higher rate of false positives would increase the possibility that a woman’s surgery is performed by a gynecologic oncologist rather than a gynecologist or other non-specialist.

The study follows the March 2011 publication in Obstetrics & Gynecology, the official publication of ACOG, of an updated committee opinion, The Role Of The Obstetrician-Gynecologist In The Early Detection Of Epithelial Ovarian Cancer, by ACOG and Society of Gynecologic Oncologists (SGO) that cited the FDA clearance of OVA1 (in 2009) and indicated that OVA1 “appears to improve the predictability of ovarian cancer in women with pelvic masses” and “may be useful for evaluating women with a pelvic mass.”

“Prior to OVA1’s clearance by the FDA, the only lab test physicians could use to assess the likelihood that an ovarian mass was malignant prior to surgery was CA-125, even though CA-125 is not indicated for this use and its performance is variable,” said Dr. Eric T. Fung, chief science officer, Vermillion, Inc. “These data should give physicians more confidence to refer women whose OVA1 test result indicates a high likelihood of cancer to a gynecologic oncologist for surgery.”

Ovarian cancer is the leading cause of death from gynecologic cancers in the United States and the fifth-leading cause of cancer deaths in women. Ovarian masses affect an estimated one million women and lead to as many 300,000 ovarian mass surgeries in the United States each year, according to an analysis by third parties on behalf of Quest Diagnostics.

About OVA1®

OVA1 is the first test cleared by FDA for aiding in the pre-surgical evaluation of a woman’s ovarian mass for cancer, and also is the first protein-based In Vitro Diagnostic Multi-Variate Index Assays (IVDMIA), a new class of state of the art software-based diagnostics. The test utilizes five well-established biomarkers — transthyretin (TT or prealbumin), apoolipoprotein A-1 (Apo A-1), beta 2-microglobulin (beta 2M), transferrin (Tfr) and cancer antigen 125 (CA-125 II) — and proprietary software to determine the likelihood of malignancy in women with ovarian mass for whom surgery is planned.

OVA1 is indicated for women who meet the following criteria: (i) over age 18, (ii) ovarian adnexal mass present for which surgery is planned, and (iii) not yet referred to an oncologist. It is an aid to further assess the likelihood that malignancy is present when the physician’s independent clinical and radiological evaluation does not indicate malignancy. The test should not be used without an independent clinical/radiological evaluation and is not intended to be a screening test or to determine whether a patient should proceed to surgery. Incorrect use of the OVA1 Test carries the risk of unnecessary testing, surgery, and/or delayed diagnosis.

About Quest Diagnostics

Quest Diagnostics is the world’s leading provider of diagnostic testing, information and services that patients and doctors need to make better healthcare decisions. The company offers the broadest access to diagnostic testing services through its network of laboratories and patient service centers, and provides interpretive consultation through its extensive medical and scientific staff. Quest Diagnostics is a pioneer in developing innovative diagnostic tests and advanced healthcare information technology solutions that help improve patient care. Additional company information is available at http://www.questdiagnostics.com/.

About Vermillion, Inc.

Vermillion, Inc. is dedicated to the development and commercialization of novel high-value diagnostic tests that help physicians diagnose, treat and improve outcomes for patients. Vermillion, along with its prestigious scientific collaborators, has diagnostic programs in oncology, cardiology and women’s health. Additional information about Vermillion can be found on the Web at http://www.vermillion.com/.

Sources:

Therapeutic Response To The Angiogenesis Inhibitor Sunitinib In Ovarian Clear Cell Cancer

A group of international researchers reported sustained responses in two ovarian clear cell cancer (OCCC) patients with chemotherapy-resistant disease, who were treated with the anti-angiogenesis inhibitor sunitinib (Sutent®). The researchers emphasize the growing realization that OCCC is molecularly and clinically distinct as compared to other forms of ovarian cancer, and note significant common scientific characteristics possessed by both OCCC and renal clear cell cancer.

Clear Cell Carcinoma of the Ovary

Ovarian clear cell cancer (OCCC) is a rare form or subtype of epithelial ovarian cancer that is generally refractory to platinum-based chemotherapy. A group of international researchers from the United Kingdom, Australia, Japan, Canada and the United States recently reported results from comprehensive OCCC tumor gene expression and copy number testing, which was designed to identify potential therapeutic targets of OCCC.

Gene expression and DNA copy number testing was performed using primary human OCCC tumor samples, and the test findings were confirmed by immunohistochemistry (IHC) on tissue microarrays. Based on this testing, the researchers identified specific over-expression of the IL6 (interleukin-6)-STAT3 (signal transducer and activator of transcription 3)-HIF (hypoxia-inducible factors) cellular pathway in OCCC tumors, as compared with high-grade serous ovarian cancers. Expression of PTHLH (parathyroid hormone-like hormone) and high levels of circulating IL6 were also found in OCCC patients, and the researchers believe that this finding may explain the frequent occurrence of hypercalcemia and thromboembolic events in OCCC. Notably, the study results set forth a description of amplification of several RTKs (receptor tyrosine kinases), most notably MET (met proto-oncogene [hepatocyte growth factor receptor]), which certainly suggests other potential therapeutic targets for this hard-to-treat subtype of ovarian cancer.

Circulating IL6 levels were measured in the blood serum from patients with OCCC or high-grade serous ovarian cancers and corresponded to progression-free and overall survival. Two OCCC patients were treated with sunitinib and their therapeutic responses were measured clinically and by positron emission tomography (PET). The researchers reported sustained clinical and functional imaging responses in two OCCC patients with chemotherapy-resistant disease who were treated with sunitinib, thereby showing  significant scientific parallels with renal clear cell cancer.

Based upon the findings above, the researchers highlighted the importance of specific therapeutic targets in the treatment of OCCC, and suggested that more extensive clinical trials with sunitinib in OCCC patients are warranted.  The overarching findings of this study provide significant impetus to the growing realization that OCCC is molecularly and clinically distinct as compared to other forms of ovarian cancer.

Source: Anglesio MS, George J, Kulbe H, et. al. IL6-STAT3-HIF Signalling and Therapeutic Response To The Angiogenesis Inhibitor, Sunitinib, In Ovarian Clear Cell Cancer. Clin Cancer Res. 2011 Feb 22. [Epub ahead of print] PubMed PMID: 21343371.

Additional Information:

  • Dedicated Ovarian Clear Cell Cancer Clinical Trials (currently recruiting as of 3/25/11).

A Phase II Evaluation of SU11248 (Sunitinib Malate) (IND #74019, NSC #736511) in the Treatment of Persistent or Recurrent Clear Cell Ovarian Carcinoma, Clinical Trial Summary, NCT00979992, ClinicalTrials.gov.

A Phase II Evaluation of Temsirolimus (CCI-779) [Torisel®] (NCI Supplied Agent: NSC# 683864, IND# 61010) in Combination With Carboplatin and Paclitaxel Followed by Temsirolimus (CCI-779) Consolidation as First-Line Therapy in the Treatment of Stage III-IV Clear Cell Carcinoma of the Ovary, Clinical Trial Summary, NCT01196429, ClinicalTrials.gov.

  • Open Ovarian Cancer and Solid Tumor Clinical Trials Testing MET Inhibitors (as of 3/25/11)

We provide below a list of MET inhibitors that are currently available through open ovarian cancer and solid tumor clinical trials.  A few caveats are noteworthy.

First, the association between MET inhibiton and ovarian clear cell cancer inhibition has NOT been established as a form of treatment in large randomized, prospective clinical trials.

Second, most of the clinical trials listed below are phase I studies designed to test the biological activity and safety of the drug — not the effectiveness.  Patients enrolled in a phase I trial are generally the first humans to receive the study drug.

Third, all patients should seek advice from their doctor in advance of deciding to enroll in a clinical trial. Many of the clinical drugs listed below inhibit one or more cellular functions in addition to MET.

List of open solid tumor clinical trials testing AMG 208.

List of open solid tumor clinical trials testing MGCD-265.

List of open solid tumor clinical trials testing PF-2341066 (crizotinib)(NCT01121588NCT00585195).

List of open ovarian cancer clinical trials testing sunitinib (SU11274)/Sutent®.

List of open solid tumor clinical trials testing sunitinib (SU11274)/Sutent®.

List of open solid tumor clinical trials testing cabozantinib (a/k/a XL184 or BMS-907351).

List of open solid tumor clinical trials testing ARQ197.

List of open solid tumor clinical trials testing INCB28060.

List of open solid tumor clinical trials testing E7050.

List of open solid tumor clinical trials testing MGCD265.

  • Genetic Similarity Between Ovarian Clear Cell Cancer & Renal Clear Cell Cancer

Yoshida S, Furukawa N, Haruta S, et. al. Theoretical model of treatment strategies for clear cell carcinoma of the ovary: focus on perspectives. Cancer Treat Rev. 2009 Nov;35(7):608-15. Epub 2009 Aug 8. Review. PubMed PMID: 19665848.

Rauh-Hain JA, Penson RT. Potential benefit of Sunitinib in recurrent and refractory ovarian clear cell adenocarcinoma. Int J Gynecol Cancer. 2008 Sep-Oct;18(5):934-6. Epub 2007 Dec 13. PubMed PMID: 18081793.

Zorn KK, Bonome T, Gangi L, et. al. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res. 2005 Sep 15;11(18):6422-30. PubMed PMID: 16166416.

Ohio State University Reports That Ovarian Cancer Drug Bevacizumab Is Not Cost-Effective

An analysis conducted by Ohio State University cancer researchers found that adding the targeted therapy bevacizumab to the first-line treatment of patients with advanced ovarian cancer is not cost effective.

An analysis conducted by Ohio State University cancer researchers found that adding the targeted therapy bevacizumab [Avastin®] to the first-line treatment of patients with advanced ovarian cancer is not cost-effective.

The findings comparing the relative value of various clinical strategies were published online March 7 in the Journal of Clinical Oncology (JCO).

Dr. David E. Cohn is a gynecologic oncologist & researcher at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital & Richard J. Solove Research Institute. He is also the lead author of the bevacizumab cost-effectiveness study.

The researchers performed a cost-effectiveness analysis looking at a clinical trial conducted by the Gynecologic Oncology Group (GOG) studying the use of bevacizumab along with standard chemotherapy for patients with advanced ovarian cancer, said first author Dr. David E. Cohn, a gynecologic surgical oncologist and researcher at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

Bevacizumab is a novel targeted therapy designed to inhibit angiogenesis, the process by which new blood vessels develop and carry vital nutrients to a tumor.

Although a discussion regarding cost-effectiveness of a potentially life-extending intervention invariably suggests the rationing of limited health care resources, the intent of this study was to provide a framework with which to evaluate the pending results of a clinical trial of three different interventions for ovarian cancer, said Cohn.

“We do not suggest that bevacizumab, also known by the brand name Avastin, should be withheld from a patient with ovarian cancer, but rather argue that studies evaluating the effectiveness of new treatments should also be interpreted with consideration of the expense,” says Cohn, who collaborated with Dr. J. Michael Straughn Jr., an associate professor of obstetrics and gynecology at the University of Alabama at Birmingham.

The results of the randomized phase III [GOG 218] clinical trial demonstrated an additional 3.8 months of progression-free survival (PFS) when maintenance bevacizumab was added for about one year following treatment with standard chemotherapy drugs carboplatin and paclitaxel along with bevacizumab.

“We put together a model looking at the variety of treatment arms on this clinical trial, each of which included 600 patients,” said Cohn. “Given the fact that the addition of the drug was associated with 3.8 months of additional survival without cancer, we set out to determine whether or not that benefit of survival was justified by the expense of the drug.”

The model showed that standard chemotherapy for patients in the clinical trial would cost $2.5 million, compared to $78.3 million for patients who were treated with standard chemotherapy and bevacizumab, plus additional maintenance treatments of bevacizumab for almost one year.

Bevacizumab has been used in the treatment of recurrent ovarian cancer, and the U.S. Food and Drug Administration has approved it for the treatment of colorectal, lung, breast, brain (glioblastoma) and renal cell [kidney] cancers.

Typically each treatment with bevacizumab costs $5,000, with most of those costs directly attributable to the cost of the drug, Cohn said.

Effectiveness was defined as months of progression-free survival, and costs were calculated as total costs per strategy. Cost-effectiveness strategies were defined as the cost per year of progression-free survival. Incremental cost-effectiveness ratio was defined as the costs per progression-free year of life saved.

“Ultimately, we found that if you reduced the drug cost to 25 percent of the baseline, it does become cost effective to treat patients with bevacizumab,” said Cohn. “Or, if the survival could be substantially increased above the 3.8 months of progression-free survival, that could lead to cost-effective treatment for patients with advanced ovarian cancer.”

Ovarian cancer is the most lethal gynecologic cancer, with almost 14,000 women expected to die from the disease this year, according to the American Cancer Society.

“It is anticipated that in the future, there will be increased scrutiny regarding the individual and societal costs of an effective medication,” said Cohn. “We hope that future clinical trials will incorporate the prospective collection of cost, toxicity and quality-of-life data to allow for a fully informed interpretation of the results.”

Other Ohio State researchers involved in the study are Kenneth H. Kim, Kimberly E. Resnick and David O’Malley.

Big Cost For Little Gain in Ovarian Cancer – JCO Editorial

Results of the cost-effectiveness model reported above by Cohen et. al. reveal that paclitaxel plus carboplatin plus bevacizumab, followed by bevacizumab maintenance (PCB-B), as tested in the GOG 218 phase III clinical trial, costs $78.3 million ($1,305,000 per patient) with an incremental cost-effectiveness ratio of $401,088 per progression-free year of life saved. It is important to note that traditional cost-effectiveness study models utilize the costs of improvements in overall survival, as compared to the traditional cost-effective standard of $50,000 per year of life saved, or more recently, $100,000 per year of life saved.  Cohen et. al. found that the traditional standard of $100,000 per progression free year of life saved can be achieved in calculating the incremental cost-effectiveness ratio, but only at a bevacizumab drug price point that is 25% below the actual drug cost.

Martee L. Hensley, M.D., Gynecologic Medical Oncology Service, Memorial Sloan-Kettering Cancer Center

In an accompanying JCO editorial, Martee L. Hensley, M.D., a board-certified medical oncologist who treats women with gynecologic cancers at the Memorial Sloan-Kettering Cancer Center in New York city, raises several important considerations with respect to the Ohio State University study.

First, Dr. Hensley notes that the “costs” accounted for by the Ohio State University researchers only refer to the additional monies incurred by adding bevacizumab to the standard of care paclitaxel-carboplatin treatment.  Specifically, the researchers used a standard cost metholodolgy based upon estimates of drug costs using Medicare reimbursement rates.  The model used does not include indirect costs (e.g., patient out-of-pocket expenses, time lost from work associated with 51 weeks of bevacizumab maintenance, etc.). The only costs related to toxicity of treatment included by researchers were those associated with management of intestinal perforations. Dr. Hensley highlights the fact that the cost model does not include management of grade 2 or worse hypertension or other potential problems that may be caused by bevacizumab or the other chemotherapy drugs.  To the extent that additional costs are added to the model, the cost-effectiveness ratio generated by the researchers would worsen.

Second, Dr. Hensley explains that out of necessity, the researchers’ cost-effectiveness model used PFS data due to the unavailability of overall survival or quality adjusted overall survival data in connection with the three most recent bevacizumab phase III clinical trials. This model construct assumes that the 3.8 month improvement in PFS (as reported by the GOG 218 trial investigators)  provides an improvement in the patient’s experience. Dr. Hensley emphasizes that most ovarian cancer recurrences are identified while the patient is still asymptomatic, with the help of CA-125 blood testing and computed tomography imaging (i.e., CT scan).  Stated differently, it may not be correct to assume that remaining radiographically progression-free for an addtional 3.8 months would improve a patient’s quality of life.  If GOG 218 ultimately finds that PCB-B does not improve overall survival, then the drug’s cost-effectiveness will drift farther away from an acceptable level, says Hensley.

Third, Dr. Hensley points out that only when PFS associated with PCB-B use was hypothetically extended to 32.1 months (observed PFS in GOG 218 was 14.1 months) by the researchers did the incremental cost-effectiveness ratio approach $100,000 per progression-free year of life saved.  Hensley believes that the bevacizumab data accrued to date suggests that a 32.1 month PFS is unlikely. Notably, median PFS is only 24 months among lower-risk patients with optimally debulked stage III ovarian cancer treated with intraperitoneal-based platinum drug/taxane drug therapy.

Fourth, Dr. Hensley explains that it may be possible to achieve a better incremental cost-effectiveness ratio based upon preliminary data derived from the Gynaecologic Cancer Intergroup (GCIG) phase III randomized clinical trail of paclitaxel plus carboplatin, with or without bevacizumab and bevacizumab maintenace therapy (ICON7 trial). The bevacizumab dose tested in ICON7 was only half of that used in GOG 218 (7.5 mg/kg versus 15 mg/kg), and the duration of maintenance therapy in ICON7 was only 36 weeks of continued treatment as compared to 51 weeks in GOG 218. Preliminary results reported by the GCIG in ICON7 indicate that bevacizumab creates a PFS advantage in line with that produced in GOG 218, but at half the dose. Based on these facts, Hensley states that potential use of lower-dose and shorter-duration bevacizumab would improve the incremental cost-effectiveness ratio. Moreover, if lower dose/shorter duration bevacizumab use is also found to reduce the frequency of grade 2 or worse hypertension, the overall costs associated with the drug would also be lower, says Hensley.

Dr. Hensley believes that there are additional steps to be taken (and questions to be answered) which could improve an evaluation of the role and costs of bevacizumab:

  • Is there a clinically meaningful overall survival advantage to PCB-B over paclitaxel plus carboplatin? If PCB-B is not effective, then by definition, it is not cost-effective.
  • Is the data from ICON7 sufficient to permit treatment at half the dose for 9 months instead of 12 months? If so, total bevacizumab costs would be lower.
  • Is there a subset of patients who benefit dramatically from PCB-B?
  • If there is a subset of patients who benefit dramatically from PCB-B, it is necessary to study this group of women to determine if potential biomarkers can identify which patients will or will not benefit from the addition of bevacizumab. Identifying biomarkers that can predict response means commitment to correlative studies as part of large clinical trials.

In sum, Dr. Hensley believes that buying bevacizumab at $78.3 million for 3.8 months of progression-free survival on behalf of approximately 600 women is not sustainable in today’s health care delivery system. Moreover, the incurrence of such costs may hinder basic clinical research to find better compounds that improve PFS by a more meaningful magnitude, says Dr. Hensley.  From Hensley’s perspective, it appears that the stage is set for a potential collision between medicine and policy with respect to where and how a finite number of health care dollars will be spent.

About the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (cancer.osu.edu) is one of only 40 Comprehensive Cancer Centers in the United States designated by the National Cancer Institute. Ranked by U.S. News & World Report among the top cancer hospitals in the nation, The Arthur G. James Hospital is the 205-bed adult patient-care component of the cancer program at The Ohio State University. The OSUCCC – James is one of only seven funded programs in the country approved by the NCI to conduct both phase I and II clinical trials.

Sources:

York University Researchers Identify Genetic Process That May Underlie Ovarian Cancer Chemoresistance

York University researchers have identified a genetic process that may allow ovarian cancer to resist chemotherapy.

York University researchers have zeroed in on a genetic process that may allow ovarian cancer to resist chemotherapy.

Researchers in the York University Faculty of Science & Engineering studied a tiny strand of our genetic makeup known as a microRNA (miRNA), involved in the regulation of gene expression. Cancer occurs when gene regulation goes haywire.

For many years, DNA and proteins have been viewed as the real movers and shakers in genomic studies, with RNA seen as little more than a messenger that shuttles information between the two. In fact, miRNA was considered relatively unimportant less than a decade ago; that is no longer the case. MiRNA seems to stifle the production of proteins exclusively — a function opposite that of its better-known relative, messenger RNA, or mRNA, which translates instructions from genes to create proteins.  MiRNA attaches to a piece of mRNA – which is the master template for building a protein, thereby acting as a signal to prevent translation of the mRNA into a protein. The “silencing” of proteins by miRNAs can be a good or a bad thing, depending on the circumstances.

Chun Peng, Ph.D., Professor of Biology, York University, and her team identified a genetic process involving a "microRNA" that may underlie a form of ovarian cancer chemoresistance.

“Ovarian cancer is a very deadly disease because it’s hard to detect,” says biology professor Chun Peng, who co-authored the study. “By the time it’s diagnosed, usually it is in its late stages. And by that point there’s really no way to treat the disease.” “Even when the disease is discovered in its early stages, chemotherapy doesn’t always work,” she says.

Peng was among a team of researchers that discovered a receptor, ALK7 (activin receptor-like kinase 7), that induces cell-death in epithelial ovarian cancer cells.[1] They have now discerned that miRNA 376c targets this crucial receptor, inhibiting its expression and allowing ovarian cancer cells to thrive.[2]

“Our evidence suggests that miRNA 376c is crucial to determining how a patient will respond to a chemotherapeutic agent,” says Peng. “It allows cancer cells to survive by targeting the very process that kills them off,” she says.

In examining tumors taken from patients who were non-responsive to chemotherapy, researchers found a higher expression of miRNA 376c and a much lower expression of ALK7.  Peng believes that this research is a step towards being able to make chemotherapy drugs more effective in the treatment of the disease.

“Further study is needed, but ultimately if we can introduce anti-microRNAs that would lower the level of those microRNAs that make cancer cells resistant to chemotherapeutic drugs, we will be able to make chemotherapy more effective against ovarian cancer,” Peng says.

She urges women to educate themselves about the risk factors and symptoms of the disease. For more information, visit http://www.ovariancanada.org.

Peng is a world expert in the area of ovarian cancer and the molecular basis of complications in pregnancy. Her research on chemoresistance has also contributed to knowledge and prediction of pre-eclampsia, a pregnancy disorder that is a leading cause of maternal and perinatal complications and death.

The article, MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance, was published in the Journal of Cell Science.[2]

The study’s lead author, Gang Ye, is a Research Associate in Peng’s lab. Several trainees in Peng’s lab, as well as scientists in Toronto’s Sunnybrook Research Institute and in China, also participated in the project.

The research was supported by an operating grant from the Canadian Institutes of Health Research (CIHR) and a mid-career award to Peng from the Ontario Women’s Health Council/CIHR. Ye was supported in part by a Fellowship from the Toronto Ovarian Cancer Research Network.

About York University

York University is the leading interdisciplinary research and teaching university in Canada. York offers a modern, academic experience at the undergraduate and graduate level in Toronto, Canada’s most international city. The third largest university in the country, York is host to a dynamic academic community of 50,000 students and 7,000 faculty and staff, as well as 200,000 alumni worldwide. York’s 10 Faculties and 28 research centres conduct ambitious, groundbreaking research that is interdisciplinary, cutting across traditional academic boundaries. This distinctive and collaborative approach is preparing students for the future and bringing fresh insights and solutions to real-world challenges. York University is an autonomous, not-for-profit corporation.

References:

1/Xu G, Zhou H, Wang Q, et. al. Activin receptor-like kinase 7 induces apoptosis through up-regulation of Bax and down-regulation of Xiap in normal and malignant ovarian epithelial cell lines. Mol Cancer Res. 2006 Apr;4(4):235-46. PubMed PMID: 16603637.

2/Ye G, Fu G, Cui S, et. al. MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance. J Cell Sci. 2011 Feb 1;124(Pt 3):359-68. Epub 2011 Jan 11. PubMed PMID: 21224400.

Source: York U researchers uncovering how ovarian cancer resists chemotherapy, Press Release, York University, March 2, 2011.


Outside-the-Body Filtration Device May Reduce Ovarian Cancer Cells In Abdominal Fluid

A paper published in the January issue of the journal Nanomedicine could provide the foundation for a new ovarian cancer treatment option — one that would use an outside-the-body filtration device to remove a large portion of the free-floating cancer cells that often create secondary tumors.

Schematic shows how fluids containing ovarian cancer cells could be removed from the body, treated with magnetic nanoparticles to remove the cells, then returned to the body. (Courtesy of Ken Scarberry)

Magnetic nanoparticles suspended in a liquid are attracted to a magnet. The nanoparticles could be attached to cancer cells and then removed from the body with magnetic filtration. (Credit: Gary Meek)

A paper published in the January issue of the journal Nanomedicine could provide the foundation for a new ovarian cancer treatment option — one that would use an outside-the-body filtration device to remove a large portion of the free-floating cancer cells that often create secondary tumors.

Researchers at the Georgia Institute of Technology have formed a startup company and are working with a medical device firm to design a prototype treatment system that would use magnetic nanoparticles engineered to capture cancer cells. Added to fluids removed from a patient’s abdomen, the magnetic nanoparticles would latch onto the free-floating cancer cells, allowing both the nanoparticles and cancer cells to be removed by magnetic filters before the fluids are returned to the patient’s body.

In mice with free-floating ovarian cancer cells, a single treatment with an early prototype of the nanoparticle-magnetic filtration system captured enough of the cancer cells that the treated mice lived nearly a third longer than untreated ones. The researchers expect multiple treatments to extend the longevity benefit, though additional research will be needed to document that — and determine the best treatment options.

“Almost no one dies from primary ovarian cancer,” said Dr. John McDonald, a professor in Georgia Tech’s School of Biology and chief research scientist of Atlanta’s Ovarian Cancer Institute. “You can remove the primary cancer, but the problem is metastasis. A good deal of the metastasis in ovarian cancer comes from cancer cells sloughing off into the abdominal cavity and spreading the disease that way.”

The removal system being developed by McDonald and postdoctoral fellow Ken Scarberry — who is also CEO of startup company Sub-Micro — should slow tumor progression in humans. It may reduce the number of free-floating cancer cells enough that other treatments, and the body’s own immune system, could keep the disease under control.

Professor John McDonald (standing) and postdoctoral fellow Ken Scarberry examine statistical data from their study of a potential new treatment option for ovarian cancer. (Credit: Gary Meek)

“If you can reduce metastasis, you can improve the lifespan of the person with the disease and get a better chance of treating it effectively,” said McDonald. “One goal is to make cancer a chronic disease that can be effectively treated over an extended period of time. If we can’t cure it, perhaps we can help people to live with it.”

Earlier in vitro studies published by the authors of the Nanomedicine paper showed that the magnetic nanoparticles could selectively remove human ovarian cancer cells from ascites fluid, which builds up in the peritoneal cavities of ovarian cancer patients. The nanoparticles are engineered with ligands that allow them to selectively attach to cancer cells.

The researchers believe that treating fluid removed from the body avoids potential toxicity problems that could result from introducing the nanoparticles into the body, though further studies are needed to confirm that the treatment would have no adverse effects.

The recently reported study in Nanomedicine used three sets of female mice to study the benefit of the nanoparticle-magnetic filtration system. Each mouse was injected with approximately 500,000 murine ovarian cancer cells, which multiply rapidly — each cell doubling within approximately 15 hours.

In the experimental group, the researchers — who included research scientist Roman Mezencev — removed fluid from the abdomens of the mice immediately after injection of the cancer cells. They then added the magnetic nanoparticles to the fluid, allowed them to mix, then magnetically removed the nanoparticles along with the attached cancer cells before returning the fluid. The steps were repeated six times for each mouse.

One control group received no treatment at all, while a second control group underwent the same treatment as the experimental group — but without the magnetic nanoparticles. Mice in the two control groups survived a median of 37 days, while the treated mice lived 12 days longer — a 32 percent increase in longevity.

Though much more research must be done before the technique can be tested in humans, McDonald and Scarberry envision a system very similar to what kidney dialysis patients now use, but with a buffer solution circulated through the peritoneal cavity to pick up the cancer cells.

“What we are developing is akin to hemofiltration or peritoneal dialysis in which the patient could come into a clinic and be hooked up to the device a couple of times a week,” said Scarberry. “The treatment is not heavily invasive, so it could be repeated often.”

The new treatment could be used in conjunction with existing chemotherapy and radiation. Reducing the number of free-floating cancer cells could allow a reduction in chemotherapy, which often has debilitating side effects, Scarberry said. The new treatment system could be used to capture spilled cancer cells immediately after surgery on a primary tumor.

The researchers hope to have a prototype circulation and filtration device ready for testing within three years. After that will come studies into the best treatment regimen, examining such issues as the number of magnetic nanoparticles to use, the number of treatments and treatment spacing. If those are successful, the company will work with the FDA to design human clinical trials.

The researchers also studying how their magnetic nanoparticles could be engineered to capture ovarian cancer stem cells, which are not affected by existing chemotherapy. Removing those cells could help eliminate a potent source of new cancer cells.

The research has been supported by the Georgia Research Alliance (GRA), the Ovarian Cancer Institute, the Robinson Family Foundation and the Deborah Nash Harris Endowment. A member of Georgia Tech’s Advanced Technology Development Center (ATDC) startup accelerator program and a GRA VentureLab company, Sub-Micro has also raised private funding to support its prototype development.

Challenges ahead include ensuring that nanoparticles cannot bypass the filtration system to enter the body, and controlling the risk of infection caused by opening the peritoneal cavity.

Beyond cancer, the researchers believe their approach could be useful for treating other diseases in which a reduction in circulating cancer cells or virus particles could be useful. Using magnetic nanoparticles engineered to capture HIV could help reduce viral content in the bloodstream, for instance.

“A technology like this has many different possibilities,” said Scarberry. “We are currently developing the technology to control the metastatic spread of ovarian cancer, but once we have a device that can efficiently and effectively isolate cancer cells from circulating fluids, including blood, we would have other opportunities.”

Sources:

Additional Information:

Outside-the-Box: The Rogosin Institute Is Fighting Cancer With Cancer Cells In Clinical Trials

Researchers at the Rogosin Institute are using cancer “macrobeads” to fight cancer.  Cancer cells in the beads secrete proteins which researchers believe could signal a patient’s cancer to stop growing, shrink or even die. The treatment is currently being tested in human clinical trials.

Two groundbreaking preclinical studies demonstrate for the first time that encapsulated mouse kidney cancer cells inhibit the growth of freely-growing cancer cells of the same or different type in a laboratory dish and in tumor-bearing animals. These findings support the hypothesis that cancer cells entrapped in seaweed-based gel, called “macrobeads,” send biological feedback or signals to freely-growing tumors outside the macrobead to slow or stop their growth. Both studies (cited below) are published in the on-line January 24, 2011 issue of Cancer Research, a publication of the American Association For Cancer Research.

Barry H. Smith, M.D., Ph.D., Director, The Rogosin Institute; Professor, Clinical Surgery, Weill Cornell Medical College

The Rogosin Institute, an independent not-for-profit treatment and research center associated with New York-Presbyterian Hospital and Weill Cornell Medical College, developed the cell encapsulation technology that facilitated production of the macrobead and applied this technology in conducting preclinical studies. The research team was headed by Barry H. Smith, M.D., Ph.D.,  the Director of The Rogosin Institute, Professor of Clinical Surgery at the Weill Cornell Medical College, and lead author of the studies. Findings in the studies to date are consistent with the hypothesis that when macrobeads are implanted in a host, the encapsulated cells are isolated from the host’s immune system but continue to maintain their functionality.

In addition to the standard preclinical in vivo and in vitro experiments, a clinical veterinary study was conducted in cats and dogs suffering from various spontaneous (non-induced) cancers. More than 40 animals were treated with the macrobead technology. Consistent results, measured both in terms of tumor response and animal well-being, occurred with prostate, liver and breast cancer, as well as lymphoma. Additional research revealed that regardless of the animal specie or type of cancer cell that was encapsulated, the macrobead technology inhibited cancer growth across all species and cancer types tested.  The results have included slowed tumor growth or, in some cases, necrosis and elimination of tumors and the restoration of a normal animal lifespan.

Cancer macrobead therapy has proceeded to human clinical testing. A Phase 1 trial in more than 30 patients evaluated the safety of macrobeads implanted in the abdominal cavity as a biological treatment of end-stage, treatment-resistant, epithelial-derived cancer. Based on the safety profile data, Phase 2 efficacy trials are in progress in patients with colorectal cancer, pancreatic cancer and prostate cancer. The Phase 1 trial remains open to a range of epithelial-derived cancers, including ovarian.  To date, the Rogosin Institute research team has not found evidence to indicate that placing mouse tumors in humans or other animal species causes harm or side-effects.

Scientists are testing whether macrobeads containing cancer cells can be implanted into patients and communicate with the patient’s tumor to stop growing, shrink or die.

Step 1:  Small beads are made from a seaweed-derived sugar called agarose and mixed with 150,000 mouse kidney cancer cells, and a second layer of agarose is added, encapsulating the cancer cells.

Step 2:  Within 3-to-10 days, 99% of the kidney cancer cells die.  The remaining cells have traits similar to cancer stem cells.

Step 3:  The stem cells begin to recolonize the bead.  The colonies increase in sufficient numbers within a few weeks to reach a stable state.

Step 4:  The beads begin to release proteins —  chemical signals reflecting that the beads have sufficient numbers of cells for growth regulators to kick in.

Step 5: Several hundred beads (depending on patient’s weight) are implanted in the abdominal cavity in a laparoscopic surgical procedure.  The cancer cells are trapped in the beads; preventing their circulation elsewhere in the body and protecting them from attack by the body’s immune system.

Step 6: In animal studies, researchers believe some proteins released from the beads reached tumors elsewhere in the body and tricked them into sensing that other tumor cells are nearby.

Step 7:  As a result, researchers believe tumors in some animals stopped growing, shrank or died.  The hypothesis is being tested in people with cancer.

Howard Parnes, M.D., Chief, Prostate & Urologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute

“This is a completely novel way of thinking about cancer biology,” says Howard L. Parnes, a researcher in the Division of  Cancer Prevention at the National Cancer Institute who is familiar with the work but was not involved with it. “We talk about thinking outside the box. It’s hard to think of a better example.” “They demonstrate a remarkable proof of principle that tumor cells from one animal can be manipulated to produce factors that can inhibit the growth of cancers in other animals,” Dr. Parnes says. “This suggests that these cancer inhibitory factors have been conserved over millions of years of evolution.”

“Macrobead therapy holds promise as a new option in cancer treatment because it makes use of normal biological mechanisms and avoids the toxicities associated with traditional chemotherapy,” said Dr. Barry Smith. “The results of our research show that this approach is not specific to tumor type or species so that, for example, mouse cells can be used to treat several different human tumors and human cells can be used to treat several different animal tumors.”

“Because cancer and other diseases are their own biological systems, we believe that the future of effective disease treatment must likewise be biological and system-based,” said Stuart Subotnick, CEO of Metromedia Bio-Science LLC. “Many of the existing therapies are narrow, targeted approaches that fail to treat diseases comprehensively. In contrast, our unique macrobead technology delivers an integrated cell system that alters disease processes and utilizes the body’s natural defense mechanisms. The goal is to repair the body and not merely treat the symptoms.”

It is well-known that proof of anti-tumor activity in treating animals does not represent guaranteed effectiveness in humans. But, assuming the macrobead therapy proves ultimately effective in humans, it would represent a novel approach to treating cancer and challenge existing scientific dogmas.

The cancer macrobead therapy described above is backed by Metromedia Company, a privately held telecommunications company which was run by billionaire John Kluge until his recent death. The Metromedia Biosciences unit has invested $50 million into the research.  If the treatment proves successful in humans, a large part of the revenue generated will be contributed to Mr. Kluge’s charitable foundation.

About Metromedia Bio-Science LLC

Metromedia Bio-Science LLC, in conjunction with The Rogosin Institute, utilizes the novel cell encapsulation technology to conduct research into the treatment of various diseases, including cancer and diabetes, and the evaluation of disease therapies. Metromedia Bio-Science LLC is an affiliate of Metromedia Company, a diversified partnership founded by the late John W. Kluge and Stuart Subotnick.

About The Rogosin Institute

The Rogosin Institute is an independent not-for-profit treatment and research center associated with New York-Presbyterian Hospital (NYPH) and Weill Cornell Medical College. It is one of the nation’s leading research and treatment centers for kidney disease, providing services from early stage disease to those requiring dialysis and transplantation. It also has programs in diabetes, hypertension and lipid disorders. The Institute’s cancer research program, featuring the macrobeads, began in 1995. The Rogosin Institute is unique in its combination of the best in clinical care with research into new and better ways to prevent and treat disease.

References:

Clinical Trials:

Exelixis Reports Promising Interim Data From Ovarian Cancer Patients Treated With XL184

Exelixis reports promising interim data from ovarian cancer patients treated with XL184, including:  a  32% confirmed response rate per RECIST in patients with platinum-resistant or platinum-sensitive disease, and a 64% overall week-12 disease control rate.

Ignace Vergote, M.D., Ph.D., Head, Department of Obstetrics & Gynecology and Gynecologic Oncology, Catholic University Hospital, Leuven, Belgium

Exelixis, Inc.  today reported interim data from the cohort of patients with advanced epithelial ovarian cancer, primary peritoneal, or fallopian tube carcinoma treated with XL184 in an ongoing phase 2 adaptive randomized discontinuation trial (RDT) [1]. Ignace Vergote, M.D., Ph.D., Head of the Department of Obstetrics and Gynecology and Gynecologic Oncology at the Catholic University Hospital Leuven, Leuven, Belgium, will present the data in the Molecular-Targeted Therapies-Clinical Trials poster session (Abstract #407) on Thursday, November 18th, at the 22nd EORTC-NCI-AACR [2] Symposium on Molecular Targets and Cancer Therapeutics, being held in Berlin, Germany.

XL184 Activity in Patients with Ovarian Cancer

XL184 is an oral, potent inhibitor of MET, VEGFR2 and RET. MET overexpression has been observed in advanced ovarian cancer, and anti-VEGF pathway agents have shown clinical benefit in ovarian cancer patients. For these reasons, co-targeting of the MET and VEGF signaling pathways using XL184 may represent a promising treatment strategy.

As of the November 1, 2010 cut-off date, a total of 51 patients were enrolled into the ovarian cancer cohort, with 31 evaluable for response, and 41 evaluable for safety. The median number of prior systemic treatments was 2. Tumor shrinkage was observed in 30 of 37 (81%) patients with measurable metastatic lesions. Of 31 patients evaluable for response per RECIST (Response Evaluation Criteria In Solid Tumors), 10 (32%) achieved a confirmed partial response (PR). Stable disease (SD) was reported in 15 patients (48%) including 3 patients who achieved unconfirmed PRs. The overall week-12 disease control rate (DCR)(complete responses + partial responses + stable disease responses = DCR) was 64%.

Upon subset analysis, 5 of 17 platinumrefractory or –resistant patients (29%) evaluable for response per RECIST achieved a confirmed PR. SD was reported in 7 patients (41%) including 2 patients with unconfirmed PRs. The week-12 DCR was 59% in platinum-resistant/refractory patients. Durable responses have been observed, including 2 patients with platinum-refractory or resistant disease who remain on study for 34+ and 36+ weeks, and 3 patients with platinum-sensitive disease on study for 24, 24+, and 28+ weeks. Some patients have experienced reductions in the ovarian cancer blood marker CA125, but in general no clear concordance between CA125 changes and tumor shrinkage has been observed.

Safety data are available for 49 patients who had at least 6 weeks of follow-up. The most common grade greater-than or equal to 3 adverse events, regardless of causality were PPE (Palmar-Plantar Erythrodysesthesia) syndrome (also referred to as “hand-foot syndrome”) (12%), diarrhea (7%), fatigue, vomiting (each 5%), nausea, rash, abdominal pain, hypertension, and hypomagnesemia (each 2%).

“The activity of XL184 in women with both platinum-sensitive and platinum-resistant/refractory disease is unique and encouraging. The response rate and overall disease control rate of this oral agent are impressive especially in the group of patients with platinum refractory/resistant ovarian cancer, and compare favorably to other targeted and systemic agents in development,” said, Dr. Vergote. “I believe these encouraging data warrant further evaluation of XL184 in ovarian cancer.”

Michael M. Morrissey, Ph.D., President & Chief Executive Officer, Exelixis, Inc.

“The high response rate in patients with ovarian cancer is reflective of the broad anti-tumor activity of XL184 observed in multiple tumor types to date,” said Michael M. Morrissey, Ph.D., president and chief executive officer of Exelixis. “The data from the RDT underscore the novel and differentiated clinical activity of XL184 in diverse tumor indications with predominance of either soft tissue or bone involvement.”

To access the clinical data poster mentioned in this press release, please visit www.exelixis.com.

Broad Clinical Activity of XL184 – Randomized Discontinuation Trial

XL184 has demonstrated anti-tumor activity in 9 of 12 indications studied to date. In ongoing trials, compelling activity has been observed in medullary thyroid cancer, glioblastoma, and clear cell renal cancer. In the RDT, XL184 is being evaluated in nine different tumor types, with clear signals of activity in six: prostate, ovarian, hepatocellular, breast, non-small cell lung cancer and melanoma. The adaptive RDT design allowed for rapid simultaneous assessment of the activity of XL184 across nine different tumor indications. As of the November 1, 2010 cut-off date, a total of 397 patients have been enrolled into the nine disease-specific cohorts, with 273 evaluable for response, and 312 evaluable for safety. Of 273 patients evaluable for response per RECIST, 39 achieved a PR (either confirmed or unconfirmed) and 100 had SD at week 12. The week-12 DCR for the overall population was 49%, with the highest rates occurring in hepatocellular cancer (75%), castration-resistant prostate cancer (71%), ovarian cancer (64%), melanoma (45%), non-small cell lung cancer (42%) and breast cancer (42%). Of note, a breast cancer patient with evidence of bone metastasis on bone scan demonstrated evidence of resolution on bone scan accompanied by 29% reduction in tumor size. XL184 has been generally well tolerated with a consistent adverse event profile across the nine different RDT tumor types.

About XL184

XL184, an inhibitor of tumor growth, metastasis and angiogenesis, simultaneously targets MET and VEGFR2, key kinases involved in the development and progression of many cancers, including ovarian cancer. It has recently been shown in preclinical models that treatment with selective inhibitors of VEGF signaling can result in tumors that are more invasive and aggressive compared to control treatment. In preclinical studies, upregulation of MET has been shown to occur in concert with development of invasiveness after selective anti-VEGF therapy, and may constitute a mechanism of acquired or evasive resistance to agents that target VEGF signaling. Accordingly, treatment with XL184 in similar preclinical studies resulted in tumors that were less invasive and aggressive compared to control or selective anti-VEGF treatment. Therefore, XL184 has the potential for improving outcomes in a range of indications, including those where selective anti-VEGF therapy has shown minimal or no activity.

About Exelixis

Exelixis, Inc. is a development-stage biotechnology company dedicated to the discovery and development of novel small molecule therapeutics for the treatment of cancer. The company is leveraging its biological expertise and integrated research and development capabilities to generate a pipeline of development compounds with significant therapeutic and commercial potential for the treatment of cancer. Currently, Exelixis’ broad product pipeline includes investigational compounds in phase 3, phase 2, and phase 1 clinical development. Exelixis has established strategic corporate alliances with major pharmaceutical and biotechnology companies, including Bristol-Myers Squibb Company, sanofi-aventis, GlaxoSmithKline, Genentech (a wholly owned member of the Roche Group), Boehringer Ingelheim, and Daiichi-Sankyo. For more information, please visit the company’s web site at http://www.exelixis.com.

Sources:

Additional Information:

References:

1/Rosner GL, Stadler W, Ratain MJ. et. al.  Randomized discontinuation design: Application to cytostatic antineoplastic agents. J Clin Oncol 20:4478-4484, 2002.  Pursuant to this design, all patients receive the investigational drug for an initial period of time. Patients with standard radiologic tumor shrinkage within that timeframe would continue investigational therapy, while those with radiologic progression or unacceptable toxicity would discontinue therapy. All patients with radiologic stable disease after the initial therapy period are then randomized to continuing or discontinuing therapy in a double-blind placebo-controlled manner. This is an enrichment strategy in which patients with the end point of interest are preferentially enrolled in the randomized portion and in which the heterogeneity of the randomized population is decreased. These two factors result in an increased power for detecting a clinically relevant difference and decrease the number of patients exposed to placebo. Importantly, the enrichment is driven by the properties of the investigational drug as opposed to clinical prognostic factors identified in historical untreated patients or patients treated with a different class of agents. In addition, the statistical behavior of the trial is not highly dependent on investigators’ assumptions regarding the “no dose effect” (i.e., non-receipt of drug = no effect)  for time to progression or stable disease rate, and thus effectively deals with uncertainty in this variable. Finally, patients may find such a trial design more appealing, resulting in brisk accrual.

2/EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

Dana-Farber Researchers “OncoMap” The Way To Personalized Treatment For Ovarian Cancer

Researchers have shown that point mutations – mis-spellings in a single letter of genetic code – that drive the onset and growth of cancer cells can be detected successfully in advanced ovarian cancer using a technique called OncoMap. The finding opens the way for personalized medicine in which every patient could have their tumor screened, specific mutations identified, and the appropriate drug chosen to target the mutation and halt the growth of their cancer.

Researchers have shown that point mutations – mis-spellings in a single letter of genetic code – that drive the onset and growth of cancer cells can be detected successfully in advanced ovarian cancer using a technique called OncoMap. The finding opens the way for personalized medicine in which every patient could have their tumor screened, specific mutations identified, and the appropriate drug chosen to target the mutation and halt the growth of their cancer.

Using mass spectrometry for identifying the genetic make-up of cancer cells, OncoMap can determine the point mutations in tumors by utilizing a large panel of over 100 known cancer-causing genes (referred to as “oncogenes“). In the work to be presented today (Wednesday) at the 22nd EORTCNCIAACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Berlin, researchers will describe how they used OncoMap to identify oncogene mutations in tumor samples obtained from women with advanced high-grade serous ovarian cancer. [2] Earlier in the year 76 mutations in 26 different genes had been found but, since then, further work in more tumor samples has found more.

Ursula A. Matulonis, M.D., Medical Director, Gynecologic Oncology, Dana-Farber Cancer Institute; Associate Professor, Medicine, Harvard Medical School

Dr. Ursula Matulonis, director/program leader in medical gynecologic oncology at the Dana-Farber Cancer Institute located in Boston, Massachusetts (USA) and Associate Professor of Medicine at Harvard Medical School, will tell the meeting:

“Epithelial ovarian cancer is the most lethal of all the gynecologic malignancies, and new treatments are needed for both newly diagnosed patients as well as patients with recurrent cancer. The success of conventional chemotherapy has reached a plateau, and new means of characterizing ovarian cancer so that treatment can be personalized are needed.

We know that many human cancers have point mutations in certain oncogenes, and that these mutations can cause cancer cells to have a dependence on just one overactive gene or signalling pathway for the cancer cell’s growth and survival – a phenomenon known as ‘oncogene addiction’. If the mutation that causes the oncogene addiction can be inhibited, then it seems that this often halts the cancer process. Examples of mutations that are successfully inhibited by targeted drugs are HER2 (for which trastuzumab [Herceptin®] is used in breast cancer), EGFR (erlotinib [Tarceva®] in lung cancer) and c-kit (imatinib [Gleevec®] in chronic myeloid leukemia). So if we know the status of specific genes in a tumor, then this enables us to choose specific treatments that are likely to work successfully against the cancer.”

Dr Matulonis and her colleagues used OncoMap to investigate the mutation status of high-grade serous ovarian tumors that were known not to be caused by inherited mutations in the BRCA 1 and BRCA 2 genes. They found mutations previously identified to be involved in ovarian cancer: KRAS, BRAF, CTNNB1 and PIK3CA. The KRAS and PIK3CA mutations were the most common, while BRAF was more rare. The researchers also identified a low frequency of mutations in many other different oncogenes.

Dr. Matulonis further noted:

“This study shows that it’s feasible to use OncoMap to identify whether a patient’s tumor has a mutation in an oncogene for which a known drug is available to target that specific gene, so as to enable us to place her on a clinical study of that drug; for instance, XL147 or GDC-0941 are inhibitors for the P13kinase mutation that are in clinical trials at present.  In addition, someone’s cancer could harbor a mutation (such as ALK) that is not known to be associated with ovarian cancer or has not yet been studied in ovarian cancer – these patients could be matched with a drug that inhibits that protein too. As new drugs get developed, this information would be used to match future drugs with patients and their cancers.”

The researchers hope that OncoMap will become a clinical test for all cancer patients at the Dana-Farber Cancer Institute before long, so that the genetic information obtained can be used to choose the best treatment for them.

Dr. Matulonis said:

“At present, only a few targeted therapies are being used for newly diagnosed ovarian cancer and most are being used to treat recurrent ovarian cancer, but this will change eventually. I have already referred several of our patients who are either newly diagnosed or have recurrent cancer and who have mutations (one with KRAS and one with PIK3CA) to our phase I program for drugs studies specific to these mutations.  For ovarian cancer, understanding mutational analysis is one piece of the genetic puzzle. Our group will also start looking for chromosomal and gene amplifications and deletions in patients’ tumors, which we know are important for ovarian cancer.”

Matulonis believes that OncoMap and other similar analytical tools will become mainstream practice in all cancer clinics before long. Tools for detecting genes with the incorrect numbers of copies or abnormal expression will also help doctors to choose the best treatment for individual patients.”

Source: Researchers map the way to personalised treatment for ovarian cancer, Abstract no: 35. Oral presentation in plenary session 2.  22nd EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Berlin, Germany, November 16- 19, 2010.

References:

[1] EORTC [European Organisation for Research and Treatment of Cancer, NCI [National Cancer Institute], AACR [American Association for Cancer Research].

[2] The study was funded by the Madeline Franchi Ovarian Cancer Research Fund, twoAM Fund and the Sally Cooke Ovarian Cancer Research Fund.

Related Information:

New Assay Test Predicts That 50% of Ovarian Cancers Will Respond To In Vitro PARP Inhibition

U.K. researchers develop a new test that could be used to select ovarian cancer patients who will benefit from a new class of drugs called “PARP inhibitors.”

U.K. researchers have developed a new test that could be used to select which patients with ovarian cancer will benefit from a new class of drugs called “PARP (poly (ADP-ribose) polymerase) inhibitors,” according to preclinical research presented at the National Cancer Research Institute (NCRI) Cancer Conference held in Liverpool on November 8th.  According to the test results, approximately 50 percent of all patients with ovarian cancer may benefit from PARP inhibitors.

Dr. Asima Mukhopadhyay Discusses Her Research Into A More Tailored Treatment For Ovarian Cancer

PARP Inhibition & BRCA Gene Mutations: Exploiting Ovarian Cancer’s Inherent Defects

  • Genetics 101

DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called “genes.”

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein. Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene. Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

  • Targeting DNA Repair Through PARP Inhibition

Targeting DNA repair through PARP inhibition in BRCA gene-mutated cancer cells. "DSB" stands for DNA "Double Stand Break." (Photo Credit: AstraZeneca Oncology)

Normally functioning BRCA1 and BRCA2 genes are necessary for DNA repair through a process known as “homologous recombination” (HR).  HR is a form of genetic recombination in which two similar DNA strands exchange genetic material. This process is critical to a cell’s ability to repair its DNA in the event that it becomes damaged, so the cell can continue to function.

A cell’s DNA structure can be damaged by a wide variety of intentional (i.e., select cancer treatments) or unintentional (ultraviolet light, ionizing radiation, man-made chemicals, etc.) factors.  For example, chemotherapy regimens used in the treatment of cancer, including alkylating agents, topoisomerase inhibitors, and platinum drugs, are designed to damage DNA and prevent cancer cells from reproducing.

In approximately 10 percent of inherited ovarian cancers, the BRCA 1 or BRCA2 gene is damaged or mutated.  When the BRCA1 or BRCA2 gene is mutated, a backup type of DNA repair mechanism called “base-excision repair” usually compensates for the lack of DNA repair by HR.  Base-excision repair represents a DNA “emergency repair kit.” DNA repair enzymes such as PARP, whose activity and expression are upregulated in tumor cells, are believed to dampen the intended effect of chemotherapy and generate drug resistance.

When the PARP1 protein – which is necessary for base-excision repair – is inhibited in ovarian cancer cells possessing a BRCA gene mutation, DNA repair is drastically reduced, and the cancer cell dies through so-called “synthetic lethality.”  In sum, PARP inhibitors enhance the potential of chemotherapy (and radiation therapy) to induce cell death.  Healthy cells are unaffected if PARP is blocked because they either contain one or two working BRCA1 or BRCA2 genes which do an effective DNA repair job through use of HR.

  • PARP Inhibitors: A New Class of Targeted Therapy

PARP inhibitors represent a new, targeted approach to treating certain types of cancers. PARP inhibition has the potential to overwhelm cancer cells with lethal DNA damage by exploiting impaired DNA repair function inherent in some cancers, including breast and ovarian cancers with defects in the BRCA1 gene or BRCA 2 gene, and other DNA repair molecules. Inhibition of PARP leads to the cell’s failure to repair single strand DNA breaks, which, in turn, causes double strand DNA breaks. These effects are particularly detrimental to cancer cells that are deficient in repairing double strand DNA breaks and ultimately lead to cancer cell death.

PARP inhibitors are the first targeted treatment to be developed for women with inherited forms of breast and ovarian cancer carrying faults or mutations in a BRCA gene. Early results from clinical trials are showing promise for patients with the rare inherited forms of these cancers.

Study Hypothesis: PARP Inhibitors May Be Effective Against a Large Proportion of Non-Inherited Ovarian Cancers

As noted above, PARP inhibitors selectively target HR–defective cells and have shown good clinical activity in hereditary breast and ovarian cancers associated with BRCA1 or BRCA2 mutations. The U.K. researchers hypothesized that a high proportion (up to 50%) of sporadic (non-inherited) epithelial ovarian cancers could be deficient in HR due to genetic or epigenetic inactivation of the BRCA1, BRCA2, or other HR-related genes, which occur during a woman’s lifetime. Therefore, PARP inhibitors could prove beneficial to a larger group of ovarian cancer patients, assuming a patient’s HR status can be properly identified.

To test this hypothesis, the U.K. researchers developed a functional assay to test the HR status of primary ovarian cancer cultures derived from patients’ ascitic fluid. The test, referred to as the “RAD51 assay,” scans the cancer cells and identifies which tumor samples contain defective DNA repair ability (i.e., HR-deficient) which can be targeted by the PARP inhibitor. The researchers tested the HR status of each culture, and then subjected each one to in vitro cytotoxicity testing using the potent PARP inhibitor PF-01367338 (formerly known as AG-14699).

Study Results: 90% of HR-Deficient Ovarian Cancer Cultures Respond to PARP Inhibition

Upon testing completion, the U.K. researchers discovered that out of 50 primary cultures evaluated for HR status and cytotoxicity to the PARP inhibitor, approximately 40% of the cultures evidenced normal HR activity, while 60 percent of the cultures evidenced deficient HR activity. Cytotoxicity to PARP inhibitors was observed in approximately 90 percent of the HR deficient cultures, while no cytotoxicity was seen in the cultures that evidenced normal HR activity. Specifically, the PARP inhibitor PF-01367338 was found to selectively block the spread of ovarian tumor cells with low RAD51 expression.

Conclusion

Based upon the findings above, the U.K. researchers concluded that HR-deficient status can be determined in primary ovarian cancer, and that such status correlates with in vitro response to PARP inhibition.  Accordingly, the researchers concluded that potentially 50 to 60 percent of ovarian cancers could benefit from PARP inhibitors, but they note that use of the RAD51 assay as a biomarker requires additional clinical trial testing.  Although the RAD51 assay test that was used by the U.K. researchers to examine tumor samples in the laboratory is not yet suitable for routine clinical practice, the U.K. research team hopes to refine it for use in patients.

Upon presentation of the testing results, Dr. Asima Mukhopadhyay said:

“Our results show that this new test is almost 100 percent effective in identifying which ovarian cancer patients could benefit from these promising new drugs.  We have only been able to carry out this work because of the great team we have here which includes both doctors and scientists.”

The team based at Queen Elizabeth Hospital, Gateshead and the Newcastle Cancer Centre at the NICR, Newcastle University collaborated with Pfizer to develop the new assay to test tumor samples taken from ovarian cancer patients when they had surgery.

Dr. Mukhopadhyay added:

“Now we hope to hone the test to be used directly with patients and then carry out clinical trials. If the trials are successful we hope it will help doctors treat patients in a personalised and targeted way based on their individual tumour. It is also now hoped that PARP inhibitors will be useful for a broad range of cancers and we hope this test can be extended to other cancer types.”

Dr. Lesley Walker, Cancer Research UK’s director of cancer information, said:

“It’s exciting to see the development of promising new ‘smart’ drugs such as PARP inhibitors. But equally important is the need to identify exactly which sub-groups of patients will benefit from these new treatments. Tests like this will become invaluable in helping doctors get the most effective treatments quickly to patients, sparing them from unnecessary treatments and side effects.”

Sources:

Additional Information:

________________________________________

About The Researchers

Dr. Asima Mukhopadhyay is a doctor and clinical research fellow working at the Queen Elizabeth Hospital, Gateshead and the Northern Institute for Cancer Research at Newcastle University. Queen Elizabeth Hospital is run by Gateshead Health NHS Foundation Trust and is the home for gynecological oncology for the North East of England and Cumbria. She received a bursary to attend the conference, which was awarded on the merit of her work.

Key researchers on the study included Dr. Richard Edmondson, who was funded by the NHS, and Professor Nicola Curtin, who was funded by the Higher Education Funding Council. Dr Asima Mukhopadhyay is funded by the NHS.

Dr Richard Edmondson is a consultant gynecological oncologist at the Northern Gynaecological Oncology Centre, Gateshead and a Senior Lecturer at the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, and is a member of the research team.

Nicola Curtin is Professor of Experimental Cancer Therapeutics at Newcastle University and is the principal investigator of this project.

Current and future work involves working closely with Pfizer. Pfizer developed one of the PARP inhibitors and supported this project.

About The Newcastle Cancer Centre

The Newcastle Cancer Centre at the Northern Institute for Cancer Research is jointly funded by three charities: Cancer Research UK, Leukaemia and Lymphoma Research, and the North of England Children’s Cancer Research Fund.  Launched in July 2009, the Centre is based at the Northern Institute for Cancer Research at Newcastle University.  The Centre brings together some of the world’s leading figures in cancer research and drug development. They play a crucial role in delivering the new generation of cancer treatments for children and adults by identifying new drug targets, developing new drugs and verifying the effectiveness and safety of new treatments. This collaborative approach makes it easier for researchers to work alongside doctors treating patients, allowing promising new treatments to reach patients quickly.

About the NCRI Cancer Conference

The National Cancer Research Institute (NCRI) Cancer Conference is the UK’s major forum for showcasing the best British and international cancer research. The Conference offers unique opportunities for networking and sharing knowledge by bringing together world leading experts from all cancer research disciplines. The sixth annual NCRI Cancer Conference was held from November 7-10, 2010 at the BT Convention Centre in Liverpool. For more information visit www.ncri.org.uk/ncriconference.

About the NCRI

The National Cancer Research Institute (NCRI) was established in April 2001. It is a UK-wide partnership between the government, charity and industry which promotes cooperation in cancer research among the 21 member organizations for the benefit of patients, the public and the scientific community. For more information visit www.ncri.org.uk.

NCRI members include: the Association of the British Pharmaceutical Industry (ABPI); Association for International Cancer Research; Biotechnology and Biological Sciences Research Council; Breakthrough Breast Cancer; Breast Cancer Campaign; CancerResearch UK; CHILDREN with LEUKAEMIA, Department of Health; Economic and Social Research Council; Leukaemia & Lymphoma Research; Ludwig Institute for Cancer Research; Macmillan Cancer Support; Marie Curie Cancer Care; Medical Research Council; Northern Ireland Health and Social Care (Research & Development Office); Roy Castle Lung Cancer Foundation; Scottish Government Health Directorates (Chief Scientist Office);Tenovus; Welsh Assembly Government (Wales Office of Research and Development for Health & Social Care); The Wellcome Trust; and Yorkshire Cancer Research.

Peptide Being Tested for Atherosclerosis Inhibits Ovarian Cancer Growth; Clinical Trial Planned

A drug in testing to treat atherosclerosis significantly inhibited growth of ovarian cancer in both human cell lines and mouse models, marking the first such report of a peptide being used to fight malignancies, according to a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center.

A drug in testing to treat atherosclerosis significantly inhibited growth of ovarian cancer in both human cell lines and mouse models, marking the first such report of a peptide being used to fight malignancies, according to a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center.

The study follows a previous discovery by the same group showing that a protein called apolipoprotein A-I (apoA-I) may be used as a biomarker to diagnose early stage ovarian cancer in patients, when it typically is asymptomatic and much easier to treat. These earlier findings could be vital to improving early detection, as more than 85 percent of ovarian cancer cases present in the advanced stages, when the cancer has already spread and patients are more likely to have a recurrence after treatment, said Dr. Robin Farias-Eisner, chief of gynecologic oncology and co-senior author of the study with Dr. Srinu Reddy, a professor of medicine.

Robin Farias-Eisner, M.D., Ph.D., Chief of Gynecologic Oncology, UCLA Jonsson Comprehensive Cancer Center

“The vast majority of ovarian cancer patients are diagnosed with advanced disease and the vast majority of those, after surgery and chemotherapy, will eventually become resistant to standard therapy,” Farias-Eisner said. “That’s the reason these patients die. Now, with this peptide as a potential therapy, and if successful in clinical trials, we may have a novel effective therapy for recurrent, chemotherapy-resistant ovarian cancer, without compromising the quality of life during treatment.”

The study was published Nov. 1, 2010 in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

In their previous work, Farias-Eisner, Reddy and their research teams identified three novel biomarkers that they used to diagnose early stage ovarian cancer. In September 2009, the U.S. Food and Drug Administration cleared the first laboratory test that can indicate the likelihood of ovarian cancer, OVA1™ Test, which includes the three biomarkers identified and validated by Farias-Eisner, Reddy and their research teams.

They observed that one of the markers, apoA-I, was decreased in patients with early stage disease. They wondered why the protein was decreased and set out to uncover the answer. They speculated that the protein might be protective, and may be preventing disease progression.

The protein, apoA-I, is the major component of HDL [high-density lipoprotein], the good cholesterol, and plays an important role in reverse cholesterol transport by extracting cholesterol and lipids from cells and transferring it to the liver for extraction. The protein also has anti-inflammatory and antioxidant properties. Because lipid transport, inflammation and oxidative stress are associated with the development and progression of cancer, Farias-Eisner and Reddy hypothesized that the reduced levels of apoA-I in ovarian cancer patients may be causal in disease progression.

Mice that were engineered to have many copies of human apoA-I gene showed very little cancer development when induced with ovarian cancer, while the mice without the extra copies of apoA-I showed much more disease. The mice with extra copies of the apoA-I gene also lived 30 to 50 percent longer than those who didn’t receive it.

Farias-Eisner and Reddy wanted to treat the mice that had more cancer with the protein apoA-I, but it was too large to conveniently administer, having 243 amino acids. The researchers then turned to apoA-I mimetic peptides—only 18 amino acids in length—that are being tested for cardiovascular diseases. That project had been ongoing for a number of years at UCLA, said Reddy, who is also a part of the cardiovascular research team led by Dr. Alan M. Fogelman, executive chair of the Department of Medicine.

Srinivasa T. Reddy, Ph.D., M.Sc., Professor, Division of Cardiology, Depart. of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles

“The smaller peptides mimic the larger apoA-I protein and provided us with agents we could give to the mouse to see if it was effective in fighting ovarian cancer,” said Reddy. “One of the peptides was being tested as an experimental therapy for atherosclerosis, so we already have some information on how it’s being tolerated in humans, which would be vital information to have if we progressed to human studies in ovarian cancer.”

The peptide, thus far, has caused little to no side effects in atherosclerosis patients, Reddy said, a hopeful sign that it might be well tolerated in ovarian cancer patients.

The mice that were given the peptide by injection had about 60 percent less cancer than the mice that did not receive the peptide, Farias-Eisner said. The peptide also was given in drinking water or in mouse food and proved to be as effective when administered that way.

“It was an exciting result,” Farias-Eisner said. “It looked like we had something that could be ingested or injected that might be very effective against ovarian cancer progression.”

Farias-Eisner said the peptide avidly binds oxidized lipids, one of which is known to stimulate cancer cells to survive and multiply. In the mouse studies, the mice that received peptide had significantly lower levels of this cancer promoting lipid.

An early phase clinical trial is being planned testing the peptide in patients with aggressive ovarian cancers that are resistant to chemotherapy, a group of patients whose median survival is just 40 months. Farias-Eisner hopes the study will be started and completed within two years.

The study was funded by the Womens Endowment, the Carl and Roberta Deutsch Family Foundation, the Joan English Fund for Women’s Cancer Research, the National Institutes of Health and the West Los Angeles Veterans Affairs Medical Center.

UCLA’s Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation’s largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Sources:

Estrogen Replacement Therapy Speeds Growth of ER+ Ovarian Cancer & Increases Risk of Lymph Node Metastasis

Estrogen therapy used by menopausal women causes “estrogen receptor positive” (ER+) ovarian cancer to grow five times faster, according to a new study being published by researchers at the University of Colorado Cancer Center in the November 1 issue of Cancer Research.

Estrogen therapy used by menopausal women causes so-called “estrogen receptor positive” (ER+) ovarian cancer to grow five times faster, according to a new study being published tomorrow by researchers at the University of Colorado Cancer Center.

Menopausal estrogen replacement therapy (ERT) also significantly increases the likelihood of the cancer metastasizing to the lymph nodes, according to the study, which will be published in the November 1 issue of Cancer Research. The study was released online on Oct. 19, 2010. Cancer Research, published by the American Association for Cancer Research, is the world’s largest (based upon circulation) medical journal devoted specifically to cancer research.

The effect of ERT was shown in mouse models of estrogen receptor positive (ER+) ovarian cancer, which accounts for about 60 percent of all human ovarian cancer cases. Ovarian cancer is one of the deadliest cancers affecting women. This year alone, nearly 22,000 women will be newly diagnosed with ovarian cancer and an estimated 13,850 women will die from the disease, according to the National Cancer Institute.

Monique Spillman, M.D., Ph.D., Gynecologic Oncologist, University of Colorado Hospital; Assistant Professor, Obstetrics & Gynecology, University of Colorado School of Medicine.

“We showed that estrogen replacement substantially increases proliferation and risk of distant lymph node metastasis in ER+ tumors,” says Monique Spillman, M.D., Ph.D., the study’s lead researcher, a gynecologic oncologist at University of Colorado Hospital and assistant professor at of obstetrics and gynecology at the University of Colorado School of Medicine.

For the first time, Spillman and her team measured ovarian cancer growth in the abdomen of mice using novel techniques for visualizing the cancer. In mice with ER+ ovarian cancer cells, which were tagged with a firefly-like fluorescent protein that allowed them to be tracked, the introduction of estrogen therapy made the tumors grow five times faster than in mice that did not receive the ERT. The risk of the cancer moving to the lymph nodes increased to 26 percent in these mice compared with 6 percent in mice that did not receive ERT.

The team also found that the estrogen-regulated genes in ovarian cancer reacted differently than ER+ genes found in breast cancer, helping to explain why current anti-estrogen therapies used with breast cancer, such as tamoxifen, are largely ineffective against ovarian cancer.

“Breast cancer and ovarian cancer are often linked when talking about hormone replacement therapy, but we found that only 10 percent of the ER+ genes overlapped,” Spillman says. “We were able to identify estrogen-regulated genes specific to ER+ ovarian cancer that are not shared with ER+ breast cancers. We believe these genes can be specifically targeted with new anti-estrogen therapies that could more effectively treat ER+ ovarian cancers.”

“Breast cancer and ovarian cancer are often linked when talking about hormone replacement therapy, but we found that only 10 percent of the ER+ genes overlapped.  We were able to identify estrogen-regulated genes specific to ER+ ovarian cancer that are not shared with ER+ breast cancers. We believe these genes can be specifically targeted with new anti-estrogen therapies that could more effectively treat ER+ ovarian cancers.”

— Monique Spillman, M.D., Ph.D., Gynecologic Oncologist, University of Colorado Hospital; Assistant Professor, Obstetrics & Gynecology, University of Colorado School of Medicine.

Spillman and her team now will begin to screen current anti-estrogen therapies against the newly identified ovarian cancer genes to identify the [biological] pathways and compounds relevant to the treatment for ER+ ovarian cancer.

This study looked at the effect of estrogen replacement therapy in mice that already possessed ER+ ovarian cancer cells. It did not test whether the estrogen replacement actually could cause the development of these cancer cells. The study also dealt only with estrogen replacement, which is linked to higher risks of ovarian cancer, not combined estrogen/progesterone therapy that is used with women who retain their uteruses.

This research is too early to draw implications for use of estrogen replacement therapy in women, Spillman cautions. “We cannot make clinical recommendations based on what is happening in mice,” says Spillman, one of just eight gynecological oncologists in Colorado. “Every woman is different and needs to talk to her doctor about the decision to use hormone replacement therapy.”

The study was funded by a Gynecologic Cancer Foundation Career Development Award and the Liz Tilberis Scholars Award from the Ovarian Cancer Research Foundation. This competitive award, a $450,000 three-year grant, is given to early-career researchers who are developing techniques for early diagnosis and improved care for women with ovarian cancer.

About the University of Colorado Cancer Center

The University of Colorado Cancer Center is the Rocky Mountain region’s only National Cancer Institute-designated comprehensive cancer center. NCI has given only 40 cancer centers this designation, deeming membership as “the best of the best.” Headquartered on the University of Colorado Denver Anschutz Medical Campus, UCCC is a consortium of three state universities (Colorado State University, University of Colorado at Boulder and University of Colorado Denver) and five institutions (The Children’s Hospital, Denver Health, Denver VA Medical Center, National Jewish Health and University of Colorado Hospital). Together, our 440+ members are working to ease the cancer burden through cancer care, research, education and prevention and control. Learn more at www.uccc.info.

Sources:

Additional Information:

Girls with Stage I Ovarian Germ-Cell Tumors Can Safely Skip Chemotherapy Until Recurrence

Researchers from Dana-Farber/Children’s Hospital Cancer Center found that as many as 50 percent of young girls treated for germ-cell ovarian tumors may be safely spared chemotherapy using a “watch and wait” strategy to determine whether follow-up treatment is needed.

Researchers from Dana-Farber/Children’s Hospital Cancer Center (DF/CHCC) found that as many as 50 percent of young girls treated for germ-cell ovarian tumors may be safely spared chemotherapy using a “watch and wait” strategy to determine whether follow-up treatment is needed.

In contrast to the current practice of administering chemotherapy to all patients following removal of these rare tumors, researchers said the study demonstrated that treatment could safely be delayed and given only when the cancer recurred.

Data from the trial involving 25 young women ages 9 to 16 was presented at the 42nd Congress of the International Society of Paediatric Oncology (SIOP) in Boston on Friday, October. 22.

Lindsay Frazier, M.D., Pediatric Oncologist, Dana-Farber / Children's Hospital Cancer Center; Chair, Germ Cell Tumor Committee, Children's Oncology Group

The study was led by Lindsay Frazier, MD, a pediatric oncologist at DF/CHCC and chair of the Germ Cell Tumor Committee of the Children’s Oncology Group.

“I personally think that not giving chemotherapy to half the patients [women with germ cell ovarian tumors] is a good thing,” said Frazier. “The chemotherapy is just as effective given when the disease recurs. I would recommend that parents consider a watching and waiting strategy.”

Germ cell tumors are malignancies that develop in precursors of sperm cells in boys and egg cells in girls. Some forms of the tumors are most often detected immediately following birth; other types are most common between the ages of 10 and 30.

Previous trials had shown that delaying chemotherapy was safe and effective in Stage 1 germ cell testicular tumors in boys. Over time, 30 percent of the patients developed a recurrence, but they were all cured by chemotherapy.

“So instead of giving 100 percent of them chemotherapy, only 30 percent needed it,” explained Frazier, who said it’s been found that the usual three cycles of chemotherapy administered for the tumors doubles the long-term risk of cardiovascular disease or second cancers.

The current study was undertaken to test a similar watch-and-wait approach in female patients. Frazier said 25 girls with Stage 1 germ cell ovarian tumors were recruited from about 100 medical centers — an indication of the cancer’s rarity. In all cases, the tumors had been completely removed by surgery.

Instead of undergoing chemotherapy immediately, the girls were monitored closely for signs of recurrence. Every three weeks their blood was tested for biochemical markers signifying a regrowth of the cancer, and every three months they were scanned with CT or MRI imaging.

“The median time to relapse was two months, and the latest relapse was at 9 months, so the families were not living with uncertainty for a long time,” Frazier said.

The recurrence rate was 50 percent — higher than in the boys with germ cell tumors — but the delayed treatment was similarly effective though one girl died, yielding a survival rate of 96 percent.

Preventing unnecessary chemotherapy treatment for half of girls with such tumors is still desirable, said Frazier, “because there is evidence that girls are even more susceptible to long-term harm from chemo than boys are.”

The study was supported by the National Cancer Institute.

Sources:

British Columbian Researchers Make Groundbreaking Genetic Discovery In Endometriosis-Associated Ovarian Cancers

British Columbian researchers discover that approximately one-half of clear-cell ovarian cancers and one-third of endometrioid ovarian cancers possess ARID1A gene mutations, as reported today in the New England Journal of Medicine.

British Columbian researchers discover that approximately one-half of ovarian clear-cell cancers (OCCC) and one-third of endometrioid ovarian cancers possess ARID1A (AT-rich interactive domain 1A (SWI-like)) gene mutations, as reported today in the New England Journal of Medicine (NEJM). The research paper is entitled ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas, and represents, in large part, the collaborative work of Drs. David Hunstman and Marco Marra.

Dr. David Huntsman, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia

Dr. Marco Marra, Director, Michael Smith Genome Sciences Centre, British Columbia Cancer Agency

David Huntsman, M.D., FRCPC, FCCMG, is a world-renowned genetic pathologist, and the Co-Founder and Acting Director of the Ovarian Cancer Research Program of British Columbia (OvCaRe). He also heads the Centre for Translational and Applied Genomics, located in the British Columbia (BC) Cancer Agency’s Vancouver Centre.  Dr. Huntsman is the Co-Director of the Genetic Pathology Evaluation Centre, Vancouver General Hospital, and the Associate Director of the Hereditary Cancer Program, BC Cancer Agency. He is involved in a broad range of translational cancer research and, as the OvCaRe team leader, has studied the genetic and molecular structure of ovarian cancer for many years. In June 2009, the NEJM published one of Dr. Huntsman’s most recent groundbreaking discoveries:  the identification of  mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors.

Marco Marra, Ph.D. is the Director of the BC Cancer Agency’s Michael Smith* Genome Sciences Centre (GSC) , one of eight BC Cancer Agency specialty laboratories. Dr. Marra is internationally recognized as a preeminent leader in the field of genetics.  His leadership has helped transform the GSC into one of the world’s most advanced and productive centers for development and application of genomics, bioinformatics and related technologies. The work of the GSC , along with collaborations involving the BC Cancer Agency and other local, national and international researchers and organizations, have led to several major scientific breakthroughs over the past decade.

*Dr. Michael Smith won the 1993 Nobel Prize in chemistry for his development of oligonucleotide-based site-directed mutagenesis, a technique which allows the DNA sequence of any gene to be altered in a designated manner. His technique created an groundbreaking method for studying complex protein functions, the basis underlying a protein’s three-dimensional structure, and a protein’s interaction with other molecules inside the cell.

Tackling Ovarian Cancer, “One Subtype At a Time”

In December 2008, the OvCaRe team announced an important discovery about the genetics of ovarian cancer – that instead of being one single disease, it is made up of a spectrum of distinct diseases. “Until now,” says OvCaRe team leader David Huntsman, “ovarian cancer has been treated as a single disease both in the cancer clinic and the research lab.” This may help explain why there have been many fewer advances in ovarian cancer research and treatment than for other cancer types.

On the heels of this important finding, Huntsman says his team decided to tackle ovarian cancers “one subtype at a time.” For its first target, the team chose granulosa cell ovarian tumors, which account for five percent of ovarian tumors and have no known drug treatments. Working with research colleagues at the GSC, Huntsman’s team used the latest genomic sequencing equipment to decipher the genetic code of this ovarian cancer subtype.

“[T]en years ago, ovarian cancer appeared to be an unsolvable problem—the liberating moment came when we established that ovarian cancer is actually a number of distinct diseases … We tailor our research approach to each subtype with the hope of developing effective treatments specific to each disease.”

Dr. David Huntsman, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia.

The genomic sequencing study results were illuminating, says Huntsman, as the research team was able to identify “a single ‘spelling mistake’ in this tumor’s DNA.” Still, Huntsman is buoyed by the promise of this research and its potential to save lives. “We’ve had dozens of letters and emails from women around the world with granulosa cell tumors, who’ve written to thank us saying this discovery has given them hope they never thought they would have. Reading these letters has been both incredibly humbling and inspiring for our team.” Libby’s H*O*P*E*™ reported Dr. Huntsman’s critical ovarian cancer discovery on June 10, 2009.

The OvCaRe team’s research findings have already been used to advance the care of BC patient Barbara Johns, a fourth grade teacher whose granulosa cell tumor was surgically removed in February 2009. “This could lead to new non-surgical treatment options for patients with this type of cancer,” says Johns, who was the first patient to benefit from the new diagnostic test. “It’s definitely a step in the right direction.”

Listen to a brief audio excerpt taken from an interview with Dr. David Huntsman, in which he explains why this is an exciting time for ovarian cancer research.

The Ovarian Cancer Research Program of British Columbia

Select NEJM Article Authors (left to right): Drs. Sohrab Shah, David Huntsman, Dianne Miller, C. Blake Gilks

OvCaRe, a multi-institutional and multi-disciplinary ovarian cancer research group, was developed as a collaboration between the BC Cancer Agency, the Vancouver Coastal Health Research Institute, and the University of British Columbia.  The OvCaRe program includes clinicians and research scientists from Vancouver General Hospital (VGH) and the BC Cancer Agency, who specialize in gynecology, pathology, and medical oncology. As noted above, Dr. Huntsman leads the OvCaRe team as its Co-Founder and Acting Director.

A team approach has ensured the building of translational research platforms, accessible to all OvCaRe team members regardless of institutional affiliation or medical/scientific discipline. The OvCaRe program research platforms include a gynecologic cancer tumor bank, the Cheryl Brown Ovarian Cancer Outcomes Unit, a tissue microarray core facility for biomarker studies, a xenograft core facility for testing experimental therapeutics, and a genomics informatics core facility. OvCaRe is developing two additional core facilities to improve knowledge dissemination and clinical trials capacity.

Although OvCaRe was formed less than ten years ago, the team has been recognized for several groundbreaking medical and scientific discoveries related to the understanding and management of ovarian cancer. The significant discoveries reported within the past two years are listed below.

  • Proved that various subtypes of ovarian ovarian are distinct diseases, and reported that potential treatment advances depend on both clinically managing and researching these subtypes as separate entities (2008)( PMID: 19053170).
  • Identified mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors using next generation sequencing – the first clinically relevant discovery made with this new technology (2009)(PMID: 19516027).
  • Discovered that women with earlier stage ovarian clear-cell cancer may benefit from lower abdominal radiation therapy (2010)(PMID: 20693298).

In many cases, these contributions have already led to changes in clinical practice in British Columbia. The international reputation of Vancouver’s OvCaRe team ensures that the positive impact of these changes is felt immediately throughout British Columbia, while also being emulated in other jurisdictions worldwide.  These contributions were made possible due to the population-based cancer system in British Columbia and strong support from the BC Cancer Foundation and the Vancouver General Hospital (VGH) & University of British Columbia (UBC) Hospital Foundation.

Background:  Ovarian Clear-Cell Cancer

Ovarian cancer ranks as the 5th deadliest cancer among U.S. women.[1] There are four general subtypes of epithelial ovarian cancer — serous, clear-cell, endometrioid, and mucinous.[2] High-grade serous ovarian cancer is the most common and represent approximately 70% of all cases of epithelial ovarian cancer in North America. [3]

The OCCC subtype represents 12 percent of ovarian cancers in North America; however, it represents up to 20 percent of ovarian cancers diagnosed in Japan and other East Asian countries. [3,4] OCCC possesses unique clinical features such as a high incidence of stage I disease, a large pelvic mass, an increased incidence of vascular thromboembolic complications, and hypercalcemia. [4-6] Both OCCC and endometrioid ovarian cancer are frequently associated with endometriosis. [4-6] The genetic events associated with the transformation of endometriosis into ovarian clear-cell cancer and endometrioid cancer are unknown.

Clear cell carcinoma of the ovary

OCCC does not respond well to the standard platinum and taxane-based ovarian cancer chemotherapy: response rates are 15 per cent compared to 80 per cent for the most common type of ovarian cancer, high-grade serous ovarian cancer. [4-6] However, the exact mechanisms underlying OCCC’s resistance to chemotherapy is not fully understood. Although several mechanisms involved in drug resistance exist in OCCC, including decreased drug accumulation, increased drug detoxification, increased DNA repair activity [4-6], and low proliferation activity[4]; no particular chemoresistance system has been identified. Due to the general chemoresistant nature of OCCC, it is generally stated that the prognosis for advanced-stage or recurrent OCCC is poor. [3, 7-8] The prognosis for OCCC that is diagnosed in Stage I, and treated by complete cytoreduction that results in little or no residual disease, is usually good. [8-10]

Although OCCC is the second leading cause of death from ovarian cancer, it is relatively understudied by the medical and research community. Despite this fact, there have been a few important studies involving this subtype of ovarian cancer.

Various researchers have long noted that OCCC has a distinct genetic profile, as compared to other types of epithelial ovarian cancer.[6, 11-14] Gene expression profiling can serve as a powerful tool to determine biological relationships, if any, between tumors.  In fact, National Cancer Institute (NCI) and Memorial Sloan-Kettering Cancer Center (MSKCC) researchers observed that clear-cell cancers share similarity in gene expression profiles, regardless of the human organ of origin (including kidney), and could not be statistically distinguished from one another. [13] The researchers found that the same was not true for the non-OCCC forms of epithelial ovarian cancer.  Several investigators have made similar observations. [14-16] It is important to note, however, that there are significant genetic differences between OCCC and renal clear-cell cancer (RCCC).  For example, abnormalities of the VHL (Von Hippel-Lindau)/HIF1-α (Hypoxia-inducible factor 1-alphapathway have been identified in the majority of RCCC cases, but not in OCCC cases. [17, 18]

The basic finding that clear-cell tumors show remarkably similar gene expression patterns regardless of their organ of origin is provocative.  This NCI/MSKCC study finding raises the question of whether therapies used to treat RCCC would be effective against OCCC.  Targeted-therapies such as VEGFR inhibitors (e.g., sunitinib (Sutent®)), PDGFR inhibitors (e.g., sorafenib (Nexavar®)), m-TOR inhibitors (e.g., temsirolimus (Torisel®) & everolimus (Afinitor®)), and anti-angiogenesis drugs (e.g., bevacizumab (Avastin®)) are used to treat RCCC. Notably, Fox Chase Cancer Center researchers performed preclinical testing of everolimus on ovarian cancer cell lines and xenografted mice and observed significant anti-tumor activity. [19, 20] The Division of Clinical Gynecologic Oncology at the Massachusetts General Hospital also observed the anti-tumor effect of sunitinib in one refractory OCCC patient that recurred after nine years and four prior treatment lines. [21] Japanese researchers have also highlighted this potential approach to fighting OCCC. [22-25]

All of the above-mentioned drugs used to treat RCCC are currently being tested in ovarian cancer and solid tumor clinical studies.  Accordingly, these drugs are generally available to advanced-stage and recurrent OCCC patients who do not respond to prior taxane/platinum therapy and other standard lines of treatment, assuming such patients satisfy all clinical study enrollment criteria. [26-30]

In a 2009 study conducted by researchers at Johns Hopkins and University of California, Los Angeles (UCLA), it was discovered that approximately one-third of OCCCs contained PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide) gene mutations. [31] Testing patients with cancer for PIK3CA gene mutations may be feasible and allow targeted treatment of the PI3K-AKTmTOR cellular signaling pathway, according to the results of a University of Texas, M.D. Anderson Cancer Center study presented at the 2009 AACR (American Association for Cancer Research)-NCI-EORTC (European Organization For Research & Treatment of Cancer) International Conference on Molecular Targets and Cancer Therapeutics. [31] The M.D. Anderson study results may carry great significance in the future because there are several PI3K signaling pathway targeting drugs in clinical development for use against ovarian cancer and solid tumors. [32]

Also in 2009, researchers affiliated with UCLA, the Mayo Clinic, and Harvard Medical School announced that they established a biological rationale to support the clinical study of the U.S. Food & Drug Administration (FDA)-approved leukemia drug dasatinib (Sprycel®), either alone or in combination with chemotherapy, in patients with ovarian cancer (including OCCC). [33]

In August 2010, Dr. Ken Swenerton, a senior OvCaRe team member and co-leader of OvCaRe’s Cheryl Brown Ovarian Cancer Outcomes Unit, reported provocative findings relating to the use of adjuvant radiotherapy to fight OCCC. [34] Dr. Swenerton is also a co-chair of the NCI Gynecologic Cancer Steering Committee (GCSC) Ovarian Cancer Task Force.  The NCI GCSC determines all phase III clinical trials for gynecologic cancers in the U.S. and other jurisdictions. The population-based, retrospective study conducted by OvCaRe reported that a 40 percent decrease in disease specific mortality was associated with adjuvant radiotherapy administered to women with stage I (other than grade 1 tumors), II, & III clear-cell, endometrioid, and mucinous ovarian cancers, who possessed no residual (macroscopic) disease following complete cytoreductive surgery. Although the study dataset was too small to discriminate effects among the clear-cell, endometrioid and mucinous ovarian cancer histologies, the overall results highlight the curative potential of adjuvant radiotherapy in select non-serous ovarian cancer patients.  Moreover, there is limited scientific and anecdotal evidence set forth in past studies that supports the select use of radiotherapy against OCCC. [35-38]

BRCA 1 (BReast CAncer gene 1) & BRCA 2 (BReast CAncer gene 2) mutations increase a woman’s lifetime risk of breast and ovarian cancer. [39] In at least one small study, BRCA2 germline (inherited) and somatic (non-inherited) gene mutations were identified in 46 percent of the OCCC samples tested. [40] This provocative study brings into question the potential use of PARP (Poly (ADP-ribose) polymerase) inhibitors against OCCC in select patients. [41] PARP inhibitors have shown effectiveness against germline BRCA gene mutated ovarian cancers, [42, 43] and may be effective against somatic BRCA gene mutated ovarian cancers. [44, 45]

International researchers continue to identify theoretical therapeutic drug targets for OCCC. These targets include:  IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3) [46], HNF-1beta (hepatocyte nuclear factor-1beta) [47], annexin A4  [48], GPC3(Glypican-3) [49], osteopontin [50], sFRP5 (secreted frizzled-related protein 5) [51], VCAN (versican) [52], transcription factor POU6F1 (POU class 6 homeobox 1) [53], and microRNA mir-100 [54].

Although researchers have identified that OCCC is distinct from high-grade serous carcinoma, OCCC-specific biomarkers and treatments have not been broadly adopted. Despite the theoretical approaches and study results highlighted above, there are no definitive (i.e., clinically-proven) anti-cancer agents for OCCC, and without understanding the molecular basis of this ovarian cancer subtype in much greater detail, the development of more targeted therapies is unlikely.

NEJM ARID1A Study Methodology

The OvCaRe team research consisted of four major analyses as described below.

  • RNA Sequencing of OCCC Tumor Samples and Cell Line (Discovery Cohort)

By way of background, DNA (deoxyribonucleic acid) is the genetic material that contains the instructions used in the development and functioning of our cells. DNA is generally stored in the nucleus of our cells. The primary purpose of DNA molecules is the long-term storage of information. Often compared to a recipe or a code, DNA is a set of blueprints that contains the instructions our cells require to construct other cell components, such as proteins and RNA (ribonucleic acid) molecules. The DNA segments that carry this genetic information are called genes.

RNA is the genetic material that transcribes (i.e., copies) DNA instructions and translates them into proteins.  It is RNA’s job to transport the genetic information out of the cell’s nucleus and use it as instructions for building proteins.  The so-called “transcriptome” consists of all RNA molecules within our cells, including messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). The sequence of RNA mirrors the sequence of the DNA from which it was transcribed or copied. Consequently, by analyzing the entire collection of RNAs (i.e., the transcriptome) in a cell, researchers can determine when and where each gene is turned on or off in our cells and tissues.  Unlike DNA, the transcriptome can vary with external environmental conditions. Because it includes all mRNA transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at any given time.

A gene is essentially a sentence made up of the bases A (adenine), T (thymine), G (guanine), and C (cytosine) that describes how to make a protein.  Any change in the sequence of bases — and therefore in the protein instructions — is a mutation. Just like changing a letter in a sentence can change the sentence’s meaning, a mutation can change the instruction contained in the gene.  Any changes to those instructions can alter the gene’s meaning and change the protein that is made, or how or when a cell makes that protein.

Gene mutations can (i) result in a protein that cannot carry out its normal function in the cell, (ii) prevent the protein from being made at all, or (iii) cause too much or too little of a normal protein to be made.

The first study analysis involved the RNA sequencing of 18 patient OCCC tumors and 1 OCCC cell line.  The primary purpose of this step was to discover any prevalent genetic mutations within the sample tested.  Specifically, the research team sequenced the whole transcriptomes of the OCCC tumors and the single OCCC cell line and discovered  a variety of somatic (non-inherited) mutations in the ARID1A gene.  The researchers also found mutations in CTNNB1(catenin beta-1 gene), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homologue gene), and PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide gene).

ARID1A encodes the BAF250a protein, a key component of the SWI-GNF chromatin remodeling complex which regulates many cellular processes, including development, differentiation, proliferation, DNA repair, and tumor suppression. [55] The BAF250a protein encoded by ARID1A is believed to confer specificity in regulation of gene expression.

To date, mutations or other aberrations in ARID1A have not been identified in ovarian cancer, but have been identified in breast and lung cancer cell lines. [56] Other researchers have suggested that ARID1A is a tumor-suppressor gene. [56]

  • DNA Sequencing of OCCC Tumor Samples and Cell Lines (Discovery Cohort + Mutation Validation Cohort)

The finding of multiple types of mutations in a single gene, ARID1A, within the discovery cohort, led researchers to perform a mutation validation analysis.  The researchers only conducted analyses with respect to ARID1A, because it was already known that mutations in CTNNB1, KRAS, and PIK3CA are recurrent in ovarian cancer. [31, 57]

This step of the research involved DNA sequencing of 210 samples of various subtypes of ovarian cancer and one OCCC cell line, along with the 18 OCCC tumor samples and one OCCC cell line used in the discovery cohort. Upon completion of the DNA sequencing, the researchers identified ARID1A mutations in 55 of 119 (46%) OCCCs, 10 of 33 (30%) endometrioid cancers, and none of the 76 high-grade serous cancers. Also, the researchers found primarly somatic (non-inherited) truncating mutations.

Based on the second study analysis, the researchers report that the presence of ARID1A mutations are strongly associated with OCCCs and endometrioid cancers.  These two subtypes of ovarian cancer, as noted above, are associated with endometriosis.

  • Testing For BAF250a Protein Expression

In the third study analysis, the researchers used immunohistochemical analysis (IHC) to measure BAF250a protein expression in 450 ovarian cancers.

The first round of IHC testing involved 182 ovarian cancers which were available from the discovery cohorts and the mutation-validation cohorts: 73 OCCCs, 33 endometrioid cancers, and 76 high-grade serous ovarian cancers.  The goal of the first IHC analysis was to compare the loss of BAF250a protein expression in OCCCs and endometrioid cancers, with and without ARID1A mutations. Upon completion, the researchers identified loss of BAF250a protein expression in 27 of 37 (73%) OCCCs, and 5 of 10 (50%) endometrioid cancers, which possessed ARID1A mutations. In contrast, loss of BAF250a protein expression was identified in only 4 of 36 (11%) OCCCs, and 2 of 23  (9%) endometrioid cancers, which did not possess ARID1A mutations. Thus, the loss of BAF250a protein expression was much greater in OCCCs and endometrioid cancers with ARID1A mutations.

The goal of the second IHC analysis was to compare loss of BAF250a protein expression among all OCCCs, endometrioid cancers, and high-grade serous cancers. The researchers identified loss of BAF250a protein expression in 31 of 73 (42%) OCCCs, and 7 of 33 (21%) endometrioid cancers, as compared to 1 of 76 (1%) high-grade serous cancers. Thus, the loss of BAF250a protein expression was much greater in the OCCCs and endometrioid cancers, as compared to high-grade serous cancers, regardless of ARID1A mutation status.

The second round of IHC testing measured loss of BAF250a protein expression within the IHC validation cohort. This analysis revealed that 55 of 132 (42%) OCCCs, 39 of 125 (31%) endometrioid cancers, and 12 of 198 (6%) high-grade serous cancers, lost BAF250a protein expression.

By the end of IHC testing, the researchers established that the loss of BAF250a protein expression was consistently more common in OCCCs and endometrioid cancers than in high-grade serous cancers, when assessed in the discovery and mutation-validation cohorts, and again in the IHC cohort.

The researchers also reported that no significant associations with loss of BAF250a protein expression were noted on the basis of age at disease presentation, disease stage, or disease-specific survival within any of the ovarian cancer subtypes.

  • Analysis of ARID1A Gene Mutations & BAF250a Protein Expression In Continguous Atypical Endometriosis

The fourth study analysis evaluated samples taken from two OCCC patients who had ARID1A mutations and contiguous atypical endometriosis. In both instances, the patient sample included the primary OCCC tumor, clones derived from contiguous atypical endometriosis, and clones derived from a distant endometriotic lesion.

In the first patient, ARID1A mutations were identified in the OCCC tumor, and 17 of 42 clones derived from contiguous atypical endometriosis, but in none of the 52 clones derived from a distant endometriotic lesion. The samples taken from this patient’s OCCC tumor and atypical endometriosis revealed loss of BAF250a protein expression; however, expression was maintained in the distant endometriotic lesion. HNF-1beta was expressed in the OCCC tumor, but not in the contiguous atypical or distant endometriosis. Estrogen receptor expression tested positive in both the contiguous atypical and distant endometriosis, but not in the OCCC tumor.

In the second patient, ARID1A mutations and a CTNNB1 mutation were identified in the OCCC tumor and contiguous atypical endometriosis, but not in a distant endometriotic lesion.

Results Summary

Based on the foregoing discussion, the major OvCaRe study findings are summarized below.

  • 46% of patients with OCCC and 30% of those with endometrioid cancers had somatic (non-inherited) truncating or missense mutation in the ARID1A gene.
  • No ARID1A mutations were identified in the 76 high-grade serous cancers analyzed.
  • Loss of BAF250a protein expression was identified in 36% of OCCCs and endometrioid cancers, but in only 1% of high-grade serous cancers.
  • Loss of BAF250a protein expression was seen in 73% and 50% of OCCCs and endometrioid cancers with an ARID1A mutation, respectively, and in only 11% and 9% of samples without ARID1A mutations, respectively.
  • The majority of cancers possessing somatic ARID1A mutations and loss of BAF250a expression appear to have a normal (also known as “wild-type”) allele present.
  • DNA and RNA sequencing data reveals that the ratio of abnormal (mutant) to normal (wild-type) alleles at both the DNA and RNA levels is consistent, thereby suggesting that epigenetic silencing is not a significant factor.
  • In two patients, ARID1A mutations and loss of BAF250a protein expression were identified in the OCCC tumor and contiguous atypical endometriosis, but not in distant endometriotic lesions.

Conclusions

The researchers note in the study that ARID1A is located at chromosome 1p36.11. Although this fact carries little meaning for a layperson, the researchers explain that this chromosomal region is commonly deleted in tumors, and that such deletions could contain tumor-suppressor genes. Based upon the totality of the data, the OvCaRe team believes that ARID1A is a tumor-suppressor gene which is frequently disrupted in OCCCs and endometrioid cancers.  Although a bit speculative due to small sample size, the researchers also believe that because ARID1A mutation and loss of BAF250a protein expression were identified in precancerous endometriotic lesions, such events represent a transformation of endometriosis into cancer.

“The finding that ARID1A is the most frequently mutated gene described thus far in endometrioid and clear cell ovarian cancers represents a major scientific breakthrough. This discovery also sheds light on how endometriosis predisposes to the development of these cancers. The novel insights provided by this work have the exciting potential to facilitate advances in early diagnosis, treatment and prevention of endometrioid and clear cell cancers, which account for over 20 per cent of ovarian cancer cases.”

Dr. Andrew Berchuck, Director, Division of Gynecologic Oncology, Duke University Medical Center

Inaugural Ovarian Clear-Cell Carcinoma Symposium

International Clear-Cell Carcinoma of the Ovary Symposium (June 24, 2010)

On June 24, 2010, a group of preeminent clinicians and cancer research scientists from around the world gathered for the Clear Cell Carcinoma of the Ovary Symposium (the Symposium), which was held at the University of British Columbia. To my knowledge, the Symposium is the first global scientific meeting dedicated to a specific subtype of ovarian cancer, namely OCCC.

At the invitation of Dr. David Huntsman, the founder of the Symposium, I had the distinct pleasure and honor of attending this prestigious and informative meeting as an observer. Dr. Huntsman was aware that my 26-year old cousin, Libby, died from OCCC, and he thought that the Libby’s H*O*P*E*™ community would benefit from the information presented at the Symposium.

The stated goal of the Symposium was to empower the international clinical and research community interested in OCCC, and allow that community to focus on the major barriers to improving OCCC outcomes. Moreover, the Symposium speakers and attendees were charged with presenting unpublished data and providing provocative OCCC questions for group discussion. The countries represented at that Symposium included Australia, Canada, Italy, Japan, the United Kingdom, and the U.S.

The 1-day event was presented through three major sessions.  The first session addressed issues that challenge the clinical dogma relating to OCCC, and covered topic areas such as epidemiology, surgery, pathology, systemic oncology, and radiation oncology. The second session addressed OCCC molecular pathology and genomics.  The third session addressed global OCCC translational research and covered topic areas including OCCC outcomes from conventional clinical trials, current OCCC clinical trials, and novel approaches to OCCC treatment and the testing of new agents.

The international Symposium presenters, included the following individuals:

  • David Bowtell, Group Leader, Cancer Genetics & Genomics Research Laboratory, Peter MacCallum Cancer Centre; Program Head, Cancer Genetics & Genomics, Peter MacCallum Cancer Centre, Melbourne (Australia).
  • Michael A. Quinn, MB ChB Glas. MGO Melb. MRCP FRCOG FRANZCOG CGO, Director of Oncology/Dysplasia, Royal Women’s Hospital, Melbourne, Australia; Professor, Department of Obstetrics and Gynecology, University of Melbourne; Chair, National Cancer Control Initiative; Chair, Education Committee, International Gynecological Cancer Society; Chair, Ovarian Cancer Research Group, Cancer Council; Member, National Expert Advisory Group on Ovarian Cancer. (Australia)
  • C. Blake Gilks, M.D., FRCPC,  Co-Founder, Ovarian Cancer Research Program of BC; Professor & Acting Head, Department of Pathology and Laboratory Medicine, University of British Columbia; Head of Anatomic Pathology, Vancouver General Hospital; Member, Vancouver Coastal Health Research Institute; Co-Founder & Co-Director, Genetic Pathology Evaluation Centre, Vancouver General Hospital. (Canada)
  • Paul Hoskins, MA, M.B. B. CHIR, MRCP., FRCPC, Clinical Professor, University of British Columbia. (Canada)
  • David Huntsman, M.D., FRCPC, FCCMG, Co-Founder & Acting Director, Ovarian Cancer Research Program of British Columbia; Director, Centre for Translational and Applied Genomics, BC Cancer Agency; Co-Director, Genetic Pathology Evaluation Centre, Vancouver General Hospital; Associate Director, Hereditary Cancer Program, BC Cancer Agency. (Canada)
  • Helen MacKay, M.D., Staff Physician, Division of Medical Oncology and Hematology, Princess Margaret Hospital; Assistant Professor, University of Toronto; Member: (i) ICON 7 Translational Committee (representing NCIC CTG),  (ii) Study Committee of the TFRI Ovarian Cancer Biomarker Program, (iii) Gynecologic Cancer Steering Committee Cervical Cancer Task Force: Intergroup/NCI/National Institutes of Health, (iv) Cervix Working Group (NCIC CTG), (v) Gynecologic Disease Site Group (Cancer Care Ontario), and (vi) the GOC CPD Committee. (Canada)
  • Amit M. Oza, Bsc, MBBS, M.D., FRCPC, FRCP, Senior Staff Physician & Professor of Medicine, Princess Margaret Hospital, University of Toronto; Clinical Studies Resource Centre Member, Ontario Cancer Institute. (Canada)
  • Ken Swenerton, M.D., Co-Leader, Cheryl Brown Ovarian Cancer Outcomes Unit, Ovarian Cancer Research Program of BC; Clinical Professor, Medical Oncology, University of British Columbia; Department of Pathology, Vancouver Coastal Health Research Institute;  Genetic Pathology Evaluation Centre,Vancouver General Hospital; Co-Chair, NCI Gynecologic Cancer Steering Committee Ovarian Cancer Task Force. (Canada).
  • Anna Tinker, M.D., FRCPC, Clinical Assistant Professor, University of British Columbia, Department of Medicine; Medical Oncologist, Oncology, British Columbia Cancer Agency (Canada).
  • Gillian Thomas, M.D., FRCPC, Professor, Department of Radiation Oncology & Obstetrics and Gynecology, University of Toronto; Radiation Oncologist, Odette Cancer Centre; Co-Chair, NCI Gynecologic Cancer Steering Committee; Member, ACRIN Gynecologic Committee; Member, Cervix Committee and Executive Committee, Gynecologic Cancer Intergroup (GCIG); Member, Cervix Committee – Gynecologic Oncology Group (GOG); Associate Editor, International Journal of Gynecologic Cancer. (Canada)
  • Aikou Okamoto, M.D., Department of Obstetrics & Gynecology, Jikei University School of Medicine, Tokyo (Japan).
  • Ian McNeish, MA, Ph.D., MRCP, MRC, Senior Clinical Fellow, Professor of Gynecological Oncology & Honorary Consultant in Medical Oncology, Deputy Director of the Barts Experimental Cancer Medicine Centre, Institute of Cancer, Barts and the London School of Medicine. (United Kingdom) (See Libby’s H*O*P*E*™, April 7, 2009)
  • Michael J. Birrer, M.D., Ph.D., Director of GYN/Medical Oncology at the Massachusetts General Hospital Cancer Center; Professor, Department of Medicine, Harvard Medical School; Co-Chair, NCI Gynecologic Cancer Steering Committee; formerly, Chief of the Molecular Mechanisms Section, Cell and Cancer Biology Branch, NCI Center for Cancer Research; formerly official representative from NCI Center for Cancer Research to the Gynecological Cancer Steering Committee. (United States)(See Libby’s H*O*P*E*™, December 8, 2009)

OvCaRe Ovarian Clear-Cell Carcinoma Research Initiative

As noted above, OCCC has been identified as distinct subtype of ovarian cancer.  OCCC-specific biomarkers or treatments have not been broadly adopted. Moreover, there are currently no clinically proven anti-cancer agents for OCCCs. For this reason, the OvCaRe team and other BC Cancer Agency scientists, have initiated a pioneering OCCC research initiative that consists of six separate, but interrelated projects.

The project will begin with the most fundamental research, the large scale sequencing of RNA and DNA derived from OCCC tumors. In the second, concurrent project, the vast quantities of genome sequence data will be transformed into usable knowledge that will be evaluated for clinical relevance by local and international experts. Identifying and validating novel biomarkers from the data obtained will be the focus of the third project, and the fourth project will permit scientists to specifically target those cellular biochemical signaling pathways that are considered to be useful tools for future drug development. The development and testing of the therapeutic targets and new drugs or new combinations of drugs in animal and human testing will complete this initiative.

The OvCaRe and the BC Cancer Agency scientists have a unique opportunity to completely reshape the scientific and medical understanding of OCCC and impact the way patients with this rare form of cancer are treated. The strength of their research initiative is based on linking the clinical research resources developed through OvCaRe with the genomic sequencing capacity of the BC Cancer Agency’s Genome Sciences Centre, and the drug development capacity of the Centre for Drug Research and Development and the NanoMedicine Research Group.

“This pioneering discovery by Dr. Huntsman and his dedicated ovarian cancer research team will allow the international research community to take the genomic ‘high ground’ in the battle against these formidable subtypes of epithelial ovarian cancer. The Ovarian Cancer Research Program of BC’s reported findings represent a critical first step towards development of one or more personalized targeted therapies to combat these lethal forms of ovarian cancer.”

Paul Cacciatore, Founder, Libby’s H*O*P*E*™

The impact of this research may not be experienced by women diagnosed with OCCC today, but this foundational research must begin immediately so as to impact outcomes in the years to come. Ably led by Dr. David Huntsman, this team of dedicated individuals represents a depth and breadth of medical and scientific expertise not often found in a single geographic location.

The hope is that through the identification of therapeutic targets for OCCC, this team will yield a powerful “superstar” drug such as Herceptin (used successfully for HER-2 positive breast cancer) or Gleevec (used successfully for chronic myelogenous leukemia (CML)). These drugs are examples of therapeutics that were created based on a direct match of an identified genetic target to the therapeutic solution.

This project is of utmost importance as it will define the unique aspects of OCCC and lead to the development of more effective therapies for women diagnosed with this rare subtype of ovarian cancer.

Special Acknowledgments

First and foremost, I want to thank Dr. Huntsman for his intelligence, creative vision and compassion, which he utilizes to great effect each day, in conducting scientific research designed to ultimately benefit all women with OCCC. I also want to thank Dr. Huntsman for the generous invitation to attend the OCCC Symposium in June. It was a privilege and honor to attend and listen to international OCCC experts discuss and debate the merits of various approaches to beating this subtype of epithelial ovarian cancer. In sum, Dr. Huntsman has been extremely generous to me with respect to his time and expertise during my recent trip to Vancouver and throughout my preparation of this article.

Prior to today’s ARID1A gene mutation discovery announcement, women with OCCC did not have a “voice” in the cancer research scientific community. Dr. Huntsman has not only given these women a voice, he has given them hope for the future.  As the late Christopher Reeve said: “Once you choose hope, anything is possible.”

I also want to thank the OvCaRe team members and BC Cancer Agency scientists that I met in Vancouver during my June trip, including Ken Swenerton, M.D., Sohrab Shah, Ph.D., Dianne Miller, M.D., Sam Aparicio, Ph.D., and Blake Gilks, M.D., for taking the time to answer all of my novice questions with a great understanding and passion.

Simply stated, this article would not have been possible without the substantial assistance provided to me by Sharon Kennedy, a Senior Director of Development with the BC Cancer Foundation. Sharon exemplifies the “heart and soul” behind the BC Cancer Foundation’s philanthropic activities.

Last, but certainly not least, I want to thank Mr. Douglas Gray, a highly successful entrepreneur and attorney, for introducing me to the BC scientific cancer research community. Doug is a tireless supporter of all women with OCCC, through his compassion, caring, and philanthropic generosity.

The Talmud says: “And whoever saves a life, it is considered as if he saved an entire world.” Doug Gray is in the business of saving women’s lives.

_________________________________

References:

1/Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin 2010 July 7 (Epub ahead of print).

2/Cellular Classification of Ovarian Epithelial Cancer, Ovarian Epithelial Cancer Treatment (PDQ®)(Health Professional Version), National Cancer Institute, July 9, 2010.

3/Köbel M, Kalloger SE, Huntsman DG, et al. Differences in tumor type in lowstage versus high-stage ovarian carcinomas. Int J Gynecol Pathol 2010;29:203-11.

4/Itamochi H, Kigawa J, Terakawa N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci 2008;99:653-8.

5/Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, et. al.  Gene Expression in Ovarian Cancer Reflects Both Morphology and Biological Behavior, Distinguishing Clear Cell from Other Poor-Prognosis Ovarian CarcinomasCan Res 2002 Aug; 62, 4722-4729.

6/Sugiyama T & Fujiwara K.  Clear Cell Tumors of the Ovary – Rare Subtype of Ovarian Cancer, Gynecologic Cancer, ASCO Educational Book, 2007 ASCO Annual Meeting, June 2, 2007 (Microsoft Powerpoint presentation).

7/Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancersGynecol Oncol. 2008 Jun;109(3):370-6. [Epub 2008 Apr 18].

8/Ma SK, Zhang HT, Wu LY, Liu LY. Prognostic analysis of 88 patients with ovarian clear cell carcinomaZhonghua Zhong Liu Za Zhi. 2007 Oct;29(10):784-8.

9/Takano M, Sasaki N, Kita T, Kudoh K, Fujii K, Yoshikawa T et. alSurvival analysis of ovarian clear cell carcinoma confined to the ovary with or without comprehensive surgical staging; Oncol Rep. 2008 May;19(5):1259-64.

10/Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H et. al.  Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical stagingBr J Cancer. 2006 May 22;94(10):1369-74.

11/Sugiyama T, Kumagai S, & Hatayama S. Treatments of epithelial ovarian cancer by histologic subtype. Gan To Kagaku Ryoho. 2009 Feb;36(2):187-92.

12/Pectasides D, Pectasides E, Psyrri A, Economopoulos T. Treatment Issues in Clear Cell Carcinoma of the Ovary: A Different Entity?Oncologist. 2006 Nov-Dec;11(10):1089-94.

13/Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ et. al.  Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer; Clin Cancer Res. 2005 Sep 15;11(18):6422-30.

14/Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M, et. alGene Expression Patterns in Ovarian CarcinomasMol. Bio. Cell 2003 Dec.; 14(11):4376-4386.

15/Tan DS, Kaye S.  Ovarian clear cell adenocarcinoma: a continuing enigma.  J Clin Pathol. 2007 Apr;60(4):355-60. Epub 2006 Oct 3.

16/ Dent J, Hall GD, Wilkinson N, Perren TJ, Richmond I, Markham AF, et. alCytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridisation. Br J Cancer. 2003 May 19;88(10):1578-83.

17/Costa LJ, Drabkin HA. Renal cell carcinoma: new developments in molecular biology and potential for targeted therapiesOncologist 2007;12:1404-1415.

18/Köbel M, Xu H, Bourne PA, Spaulding BO, Shih IM; Mao TL et. alIGF2BP3 (IMP3) Expression Is a Marker of Unfavorable Prognosis in Ovarian Carcinoma of Clear Cell Subtype. Modern Pathology. 2009;22(3):469-475. [Epub 2009 Jan 9].

19/Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, et. alRAD001[everolimus] inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model.  Clin. Cancer. Res. 2007 Jul; 13, 4261-4270.

20/Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, et. al. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer.  Cancer Res. 2007 Mar 15;67(6):2408-13.

21/Rauh-Hain JA, Penson RT. Potential benefit of Sunitinib in recurrent and refractory ovarian clear cell adenocarcinoma. Int J Gynecol Cancer. 2008 Sep-Oct;18(5):934-6. Epub 2007 Dec 13.

22/Yoshida S, Furukawa N, Haruta S, et. al. Theoretical model of treatment strategies for clear cell carcinoma of the ovary: focus on perspectives. Cancer Treat Rev. 2009 Nov;35(7):608-15. Epub 2009 Aug 8. Review.

23/Mabuchi S, Kawase C, Altomare DA, et. al.  mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res. 2009 Sep 1;15(17):5404-13. Epub 2009 Aug 18.

24/Miyazawa M, Yasuda M, Fujita M, et. al. Therapeutic strategy targeting the mTOR-HIF-1alpha-VEGF pathway in ovarian clear cell adenocarcinoma. Pathol Int. 2009 Jan;59(1):19-27.

25/Mabuchi S, Kawase C, Altomare DA, et. al.  Vascular endothelial growth factor is a promising therapeutic target for the treatment of clear cell carcinoma of the ovary. Mol Cancer Ther. 2010 Aug;9(8):2411-22. Epub 2010 Jul 27.

26/For open ovarian cancer clinical trials using sunitinib, CLICK HERE; For open solid tumor clinical trials using sunitinib, CLICK HERE.

27/For open ovarian cancer clinical trials using sorafenib CLICK HERE; For open solid tumor clinical trials using sorafenib, CLICK HERE.

28/For open ovarian cancer clinical trials using temsirolimus, CLICK HERE; For open solid tumor clinical trials using temsirolimus, CLICK HERE.

29/For open ovarian cancer clinical trials using everolimus, CLICK HERE; For open solid tumor clinical trials using everolimus, CLICK HERE.

30/For open ovarian cancer clinical trials using bevacizumab, CLICK HERE; For open solid tumor clinical trials using bevacizumab, CLICK HERE.

31/PI3K Pathway: A Potential Ovarian Cancer Therapeutic Target?, by Paul Cacciatore, Libby’s H*O*P*E*™, November 30, 2009.

32/For open ovarian cancer clinical trials using a phosphoinositide 3′-kinase (PI3K)-targeted therapy; CLICK HERE; For open solid tumor clinical trials using a phosphoinositide 3′-kinase (PI3K)-targeted therapy, CLICK HERE.

33/UCLA Researchers Significantly Inhibit Growth of Ovarian Cancer Cell Lines With FDA-Approved Leukemia Drug Dasatinib (Sprycel®),by Paul Cacciatore, Libby’s H*O*P*E*™, November 30, 2009.

34/Swenerton KD, Santos JL, Gilks CB, et. al. Histotype predicts the curative potential of radiotherapy: the example of ovarian cancers. Ann Oncol. 2010 Aug 6. [Epub ahead of print]

35/Nagai Y, Inamine M, Hirakawa M, et. al. Postoperative whole abdominal radiotherapy in clear cell adenocarcinoma of the ovary. Gynecol Oncol. 2007 Dec;107(3):469-73. Epub 2007 Aug 31.

36/Skirnisdottir I, Nordqvist S, Sorbe B. Is adjuvant radiotherapy in early stages (FIGO I-II) of epithelial ovarian cancer a treatment of the past? Oncol Rep. 2005 Aug;14(2):521-9. PubMed PMID: 16012740.

37/Takai N, Utsunomiya H, Kawano Y, et. al. Complete response to radiation therapy in a patient with chemotherapy-resistant ovarian clear cell adenocarcinoma. Arch Gynecol Obstet. 2002 Dec;267(2):98-100.

38/Suzuki M, Saga Y, Tsukagoshi S, et. al. Recurrent ovarian clear cell carcinoma: complete remission after radiation in combination with hyperthermia; a case study and in vitro study. Cancer Biother Radiopharm. 2000 Dec;15(6):625-8.

39/BRCA1 and BRCA2: Cancer Risk and Genetic Testing, National Cancer Institute Fact Sheet, Cancer Topic, National Cancer Institute, May 29, 2009.

40/Goodheart MJ, Rose SL, Hattermann-Zogg M, et. al. BRCA2 alteration is important in clear cell carcinoma of the ovary. Clin Genet. 2009 Aug;76(2):161-7. Epub 2009 Jul 28.

41/For open ovarian cancer clinical trials using PARP inhibitors, CLICK HERE; For open solid tumor clinical trials using PARP inhibitors, CLICK HERE.

42/Audeh MW, Carmichael J, Penson RT, et. al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet. 2010 Jul 24;376(9737):245-51. Epub 2010 Jul 6.

43/PARP Inhibitor Olaparib Benefits Women With Inherited Ovarian Cancer Based Upon Platinum Drug Sensitivity, by Paul Cacciatore, Libby’s H*O*P*E*™, April 23, 2010.

44/Konstantinopoulos PA, Spentzos D, Karlan BY, et. al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010 Aug 1;28(22):3555-61. Epub 2010 Jun 14.

45/Bast RC Jr, Mills GB. Personalizing therapy for ovarian cancer: BRCAness and beyond. J Clin Oncol. 2010 Aug 1;28(22):3545-8. Epub 2010 Jun 14.

46/Köbel M, Xu H, Bourne PA, et. al. IGF2BP3 (IMP3) expression is a marker of unfavorable prognosis in ovarian carcinoma of clear cell subtype. Mod Pathol. 2009 Mar;22(3):469-75. Epub 2009 Jan 9.

47/Köbel M, Kalloger SE, Carrick J, Huntsman D, et. al. A limited panel of immunomarkers can reliably distinguish between clear cell and high-grade serous carcinoma of the ovary. Am J Surg Pathol. 2009 Jan;33(1):14-21.

48/Kim A, Serada S, Enomoto T, Naka T. Targeting annexin A4 to counteract chemoresistance in clear cell carcinoma of the ovary. Expert Opin Ther Targets. 2010 Sep;14(9):963-71.

49/Maeda D, Ota S, Takazawa Y, et. al. Glypican-3 expression in clear cell adenocarcinoma of the ovary. Mod Pathol. 2009 Jun;22(6):824-32. Epub 2009 Mar 27.

50/Matsuura M, Suzuki T, Saito T. Osteopontin is a new target molecule for ovarian clear cell carcinoma therapy. Cancer Sci. 2010 Aug;101(8):1828-33. Epub 2010 May 12.

51/Ho CM, Lai HC, Huang SH, et. al. Promoter methylation of sFRP5 in patients with ovarian clear cell adenocarcinoma. Eur J Clin Invest. 2010 Apr;40(4):310-8.

52/Yamaguchi K, Mandai M, Oura T, et. al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes.  Oncogene. 2010 Mar 25;29(12):1741-52. Epub 2010 Jan 11.

53/Yoshioka N, Suzuki N, Uekawa A, et. al. POU6F1 is the transcription factor that might be involved in cell proliferation of clear cell adenocarcinoma of the ovary. Hum Cell. 2009 Nov;22(4):94-100.

54/Nagaraja AK, Creighton CJ, Yu Z, et. al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010 Feb;24(2):447-63. Epub 2010 Jan 15.

55/Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene 2009;28:1653-68.

56/Huang J, Zhao YL, Li Y, et. al.  Genomic and functional evidence for an ARID1A tumor suppressor role.  Genes Chromosomes Cancer 2007;46:745-50.

57/Largest Study Matching Genomes To Potential Anticancer Treatments Releases Initial Results, by Paul Cacciatore, Libby’s H*O*P*E*™, August 3, 2010.

_________________________________

Sources:

_________________________________

Genetics 101

The information hyperlinked above was obtained from GeneticHealth & the BC Cancer Agency’s Michael Smith Genome Sciences Centre.

About David Huntsman, M.D., FRCPC, FCCMG

David Huntsman, M.D., FRCPC, FCCMG, is a world-renowned genetic pathologist, and the Co-Founder and Director of the Ovarian Cancer Research Program of British Columbia(OvCaRe). He also heads the Centre for Translational and Applied Genomics, located in the British Columbia (BC) Cancer Agency’s Vancouver Centre.  Dr. Huntsman is also the Co-Director of the Genetic Pathology Evaluation Centre, Vancouver General Hospital, and the Associate Director of the Hereditary Cancer Program, BC Cancer Agency. He is involved in a broad range of translational cancer research and, as the OvCaRe team leader, has studied the genetic and molecular structure of ovarian cancer for many years.

His recent retrospective assessment of 21 candidate tissue-based biomarkers implicated that ovarian cancer subtypes are different diseases, contributing to the view that contemplation of disease subtype is crucial to the study of ovarian cancer. To ultimately beat ovarian cancer, Huntsman and his dedicated OvCaRe team believe that ovarian cancer must be genetically tackled “one subtype at a time.”  In June 2009, the NEJM published one of Dr. Huntsman’s most recent groundbreaking discoveries:  the identification of  mutations in the FOXL2 gene as the molecular basis of adult granulosa cell ovarian cancer tumors.  As of today, Dr. Huntsman and his OvCaRe team can add to their groundbreaking discoveries, the identification of frequent ARID1A gene mutations in endometriosis-associated ovarian cancers (i.e., the clear-cell and endometrioid ovarian cancer subtypes).

About Marco Marra, Ph.D.

Marco Marra, Ph.D. is the Director of the BC Cancer Agency’s Michael Smith Genome Sciences Centre (GSC), one of eight BC Cancer Agency specialty laboratories. Dr. Marra is internationally recognized as a preeminent leader in the field of genetics.  His leadership has helped transform the GSC into one of the world’s most advanced and productive centers for development and application of genomics, bioinformatics and related technologies.

The work of the GSC , along with collaborations involving the BC Cancer Agency and other local, national and international researchers and organizations, have led to several major scientific breakthroughs over the past decade.  These breakthroughs include the rapid genome sequencing of the SARS Coronavirus, and the sequencing and genome analysis of the avian flu (H7N3).

About the Ovarian Cancer Research Program of British Columbia (OvCaRe)

The Ovarian Cancer Research Program of BC was formed in late 2000 when a group of Vancouver-based physicians and scientists joined with the common vision of enhancing ovarian cancer research in British Columbia and the explicit goal of improving outcomes for ovarian cancer patients. OvCaRe was developed as a collaboration between the BC Cancer Agency, the Vancouver Coastal Health Research Institute, and the University of British Columbia.  The OvCaRe program includes clinicians and research scientists from the Vancouver General Hospital (VGH) and the British Columbia (BC) Cancer Agency, who specialize in gynecology, pathology, and medical oncology.

OvCaRe is currently focused on three major goals.

1. To improve ovarian cancer survival through early detection of disease. OvCaRe researchers are working to identify proteins that are produced in the early stages of ovarian cancer. Detection of these proteins can then be developed into diagnostic tests to allow for earlier diagnosis of ovarian cancer.

2. To develop new therapies for ovarian cancer treatment. This is being achieved through research aimed at identifying the cause of ovarian cancer at the cellular level and then directly and specifically targeting that defect. OvCaRe is using a similar strategy to develop treatments to prevent ovarian cancer recurrence.

3. To develop individualized ovarian cancer treatments. Ovarian cancer can be subdivided into several groups based on their pathological appearance, however these groups are currently all treated in the same manner, though their responses are quite variable. OvCaRe is working to determine what is responsible for division between ovarian cancers subtypes and developing subtype specific treatments.

OvCaRe is funded through generous donations to the VGH & UBC Hospital Foundation and BC Cancer Foundation. The OvCaRe team is considered a leader in ovarian cancer research, breaking new ground to improve the identification, understanding, and treatment of this disease.

About the British Columbia (BC) Cancer Agency

The BC Cancer Agency provides a comprehensive province-wide, population-based cancer control program for the people of British Columbia, Canada, including prevention, screening and early detection programs, translational research and education, and care and treatment.

The BC Cancer Agency’s mandate covers the spectrum of cancer care, from prevention and screening, to diagnosis, treatment, and rehabilitation. The BC Cancer Agency’s mandate is driven by a three-fold mission: (1) reduce the incidence of cancer, (2)  reduce the mortality rate of people with cancer, and (3) improve the quality of life of people living with cancer. This mission includes providing screening, diagnosis and care, setting treatment standards, and conducting research into causes of, and cures for, cancer.

The BC Cancer Agency operates five regional cancer centres, providing assessment and diagnostic services, chemotherapy, radiation therapy, and supportive care.  Each of the BC Cancer Agency’s centres delivers cancer treatment based on provincial standards and guidelines established by the Agency.

Research is an essential part of the BC Cancer Agency’s mission to not only find the causes of cancer, but to find better treatments for prolonged life and better quality of life. With direct links between the BC Cancer Agency’s physicians and researchers at its five centres (including the Deeley Research Centre (located in Victoria) and the BC Cancer Agency’s Research Centre (located in Vancouver)), the BC Cancer Agency can quickly translate new discoveries into clinical applications. The BC Cancer Agency’s Research Centre includes eight specialty laboratories including the Michael Smith Genome Sciences Centre, and the Terry Fox Laboratory.

The BC Cancer Agency includes the following among its many accomplishments:

  • Canada’s largest fully integrated cancer and research treatment organization;
  • the best cancer incidence and survival rates in Canada as a result of the unique and longstanding population-based cancer control system;
  • leadership in cancer control with world-renowned programs in lymphoid, lung, breast, ovarian and oral cancer research and care; and
  • a unique set of research platforms that form the basis of research and care, including one of the world’s top four genome sciences centres.

About the Vancouver General Hospital (VGH)

The Vancouver General Hospital (VGH) is a 955 bed hospital that offers specialized services to residents in Vancouver and across the province.  VGH is also a teaching hospital, affiliated with the University of British Columbia and home to one of the largest research institutes in Canada.

About the British Columbia (BC) Cancer Foundation

The BC Cancer Foundation is an independent charitable organization that raises funds to support breakthrough cancer research and care at the BC Cancer Agency.

Over 70 years ago, the BC Cancer Foundation, led by a group of prominent BC citizens, created what is today the BC Cancer Agency. The Foundation has offices in all five of the BC Cancer’s Agency’s treatment centres – Abbotsford, Fraser Valley, Southern Interior, Vancouver Island and Vancouver.

About the Vancouver General Hospital (VGH) & University of British Columbia (UBC) Hospital Foundation

The VGH & UBC Hospital Foundation is a registered charity that raises funding for the latest, most sophisticated medical equipment, world-class research and improvements to patient care for VGH, UBC Hospital, GF Strong Rehab Centre and Vancouver Coastal Health Research Institute. For more than 25 years, the Foundation and its donors have been a bridge between the essential health care governments provide and the most advanced health care possible.


Georgia Tech’s Ovarian Cancer Early Detection Blood Test Exhibits High Accuracy in Small Study; Larger Study Planned

Scientists at the Georgia Institute of Technology have attained very promising results on their initial investigations of a new test for ovarian cancer. Using a new technique involving mass spectrometry of a single drop of blood serum, the test correctly identified women with ovarian cancer in 100 percent of the 94 patients tested. Because of the extremely low prevalence of ovarian cancer in the general population (∼0.04%), extensive prospective testing will be required to evaluate the test’s potential utility in general screening applications.

Scientists at the Georgia Institute of Technology have attained very promising results on their initial investigations of a new test for ovarian cancer. Using a new technique involving mass spectrometry of a single drop of blood serum, the test correctly identified women with ovarian cancer in 100 percent of the 94 patients tested. The results can be found online in the journal Cancer Epidemiology, Biomarkers, & Prevention Research.

John McDonald, Ph.D., Professor, Associate Dean for Biology Program Development, Georgia Institute of Technology; Chief Science Officer, Ovarian Cancer Institute

Facundo Fernandez, Ph.D., Associate Professor, School of Chemistry & Biochemistry, Georgia Institute of Technology

“Because ovarian cancer is a disease of relatively low prevalence, it’s essential that tests for it be extremely accurate. We believe we may have developed such a test,” said John McDonald, chief research scientist at the Ovarian Cancer Institute (Atlanta) and professor of biology at Georgia Tech.

The measurement step in the test, developed by the research group of Facundo Fernandez, associate professor in the School of Chemistry and Biochemistry at Tech, uses a single drop of blood serum, which is vaporized by hot helium plasma. As the molecules from the serum become electrically charged, a mass spectrometer is used to measure their relative abundance. The test looks at the small molecules involved in metabolism that are in the serum, known as metabolites. Machine learning techniques developed by Alex Gray, assistant professor in the College of Computing and the Center for the Study of Systems Biology, were then used to sort the sets of metabolites that were found in cancerous plasma from the ones found in healthy samples. Then, McDonald’s lab mapped the results between the metabolites found in both sets of tissue to discover the biological meaning of these metabolic changes.

The assay did extremely well in initial tests involving 94 subjects. In addition to being able to generate results using only a drop of blood serum, the test proved to be 100 percent accurate in distinguishing sera from women with ovarian cancer from normal controls. In addition it registered neither a single false positive nor a false negative

The group is currently in the midst of conducting the next set of assays, this time with 500 patients.

“The caveat is we don’t currently have 500 patients with the same type of ovarian cancer, so we’re going to look at other types of ovarian cancer,” said Fernandez. “It’s possible that there are also signatures for other cancers, not just ovarian, so we’re also going to be using the same approach to look at other types of cancers. We’ll be working with collaborators in Atlanta and elsewhere.”

In addition to having a relatively low prevalence, ovarian cancer is also asymptomatic in the early stages. Therefore, if further testing confirms the ability to accurately detect ovarian cancer by analyzing metabolites in the serum of women, doctors will be able detect the disease early and save many lives.

Libby’s H*O*P*E*™ Comment:

Alex Gray, Ph.D., Assistant Professor, College of Computing & Center for the Study of Systems Biology, Georgia Institute of Technology

This study involved testing the metabolite levels in blood sera from 44 women diagnosed with serous papillary ovarian cancer (stages I-IV) and 50 healthy women or women with benign conditions.  The assay distinguished between the cancer and control groups with an unprecedented 99% to 100% accuracy. The method possesses significant clinical potential as a cancer diagnostic tool.  Because of the extremely low prevalence of ovarian cancer in the general population (∼0.04%), extensive prospective testing will be required to evaluate the test’s potential utility in general screening applications.

Sources:

Initial Trials On New Ovarain Cancer Tests Exhibit Extremely High Accuracy, News Release, Georgia Institute of Technology, August 11, 2010.

Zhou M,Guan W, Walker LD, et. al. Rapid Mass Spectrometric Metabolic Profiling of Blood Sera Detects Ovarian Cancer with High Accuracy. Cancer Epidemiol Biomarkers Prev 1055-9965.EPI-10-0126; Published OnlineFirst August 10, 2010; doi:10.1158/1055-9965.EPI-10-0126